
Lehrstuhl für Theoretische Informationstechnik

Exercise 7 in Cryptography
- Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo
2015-06-18

Solution of Problem 20

a) The bit error occurs in block Ci, i > 0, with blocksize BS.

mode Mi max #err remark
ECB E−1

K (Ci) BS only block Ci is affected
CBC E−1

K (Ci)⊕ Ci−1 BS+1 Ci and one bit in Ci+1
OFB Ci ⊕ Zi 1 one bit in Ci, as Z0 = C0, Zi = EK(Zi−1)
CFB Ci ⊕ Ek(Ci−1) BS+1 Ci and one bit in Ci+1
CTR Ci ⊕ EK(Zi) 1 one bit in Ci, Z0 = C0, Zi = Zi−1 + 1

b) If one bit of the ciphertext is lost or an additional one is inserted in block Ci at
position j, all bits beginning with the following positions may be corrupt:

mode block position
ECB i 1
CBC i 1
OFB i j
CFB i j
CTR i j

In ECB and CBC, all bits of blocks Ci, Ci+1 may be corrupt.
In OFB, CFB, CTR, all bits beginning at position j of block Ci may be corrupt.

Solution of Problem 21
Let n ∈ N, a ∈ Z∗n with Z∗n = {b ∈ Zn | gcd(b, n) = 1}.
Consider the map Ψ : Z∗n → Z∗n defined by Ψ(x) = ax mod n, with x ∈ Z∗n.

1) Show that Ψ is well-defined, i.e., ∀x ∈ Z∗n ⇒ ax ∈ Z∗n.
Z∗n is a multiplicative group, i.e., ∀x ∈ Z∗n,∀a ∈ Z∗n ⇒ (ax) ∈ Z∗n. �

2) Show that Ψ is surjective, i.e., ∀y ∈ Z∗n ∃x ∈ Z∗n : Ψ(x) = y.
y ≡ ax (mod n)⇒ a−1y ≡ x (mod n)⇒ Ψ(a−1y) ≡ y (mod n).
Since gcd(a, n) = 1 holds for all a⇒ ∃a−1 (mod n). �



3) Show that Ψ(x) is injective, i.e., for x 6≡ y ⇒ Ψ(x) 6≡ Ψ(y).
Indirect proof:
Let ax ≡ ay (mod n). Since gcd(a, n) = 1⇒ ∃a−1 ∈ Z∗n : x ≡ y (mod n). �

4) From 2) and 3) ⇒ Ψ(x) is bijective. �

5) Show that the inverse a−1 (mod n) is unique.
Indirect proof:
Let u 6≡ v ∈ Z∗n be inverses of a, i.e., ua ≡ 1 (mod n) and va ≡ 1 (mod n) holds.
But u ≡ u(va) ≡ (ua)v ≡ v (mod n) is a contradiction ⇒ the inverse is unique.
⇒ ∀a ∈ Z∗n ∃!a−1. �

6) Show that aϕ(n) ≡ 1 (mod n):
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Solution of Problem 22

a) By the Miller-Rabin Primality Test it will be proven that 341 is composite.
Write n = 341 = 1 + 85 · 22 = 1 + q · 2k.

Algorithm 1 Miller-Rabin Primality Test (MRPT)
Write n = 1 + q2k, q odd
Choose a ∈ {2, . . . , n− 1} uniformly distributed at random
y ← aq mod n
if (y = 1) OR (y = n− 1) then

return “n prime“
end if
for (i← 1; i < k; i++) do

y ← y2 mod n
if (y = n− 1) then

return “n prime“
end if

end for
return “n composite“

Choose a = 2.
Calculate aq mod n, i.e., 285 mod 341.
Note that 210 = 1024 = 3 · 341 + 1 ≡ 1 mod 341.
It follows 285 = (210︸︷︷︸

≡1

)8 · 25︸︷︷︸
=32

≡ 32 mod 341.

Alternatively, 285 mod 341 is calculated by Square and Multiply, see below. As
y = 32 /∈ {1, n− 1} the for-loop starts with i = 1.
y2 = 322 = (25)2 = 210 ≡ 1 mod 341, see above.



Furthermore, y = 1 6= 340 mod 341.
As i = 2 = k = 2 the for-loop terminates and n is stated as composite, which is a
reliable result.

b) A number n is decomposed according to MRPT as n = 1+q 2k. It follows that MRPT
has at most k squarings. The worst case occurs, if q = 1, then n = 1 + 2k ⇔ k =
log2(n− 1). With n having 300 digits it follows: n < 10301 = (103︸︷︷︸

<210

)100 · 10︸︷︷︸
<24

< 21004 ⇒

k ≤ 1004.
Consequently, less than 1004 squarings are needed. (k ≈ 999.9)
Note, evaluating aq mod n with Square and Multiply takes t squarings. But as
2t ≤ q holds, the worst case is reached, for equality which means t = 0, i.e., q = 1, as
otherwise q would be not odd.

Determining 285 mod 341 by Square and Multiply.
It holds a = 2, x = 85 = (1010101)2, i.e., t = 6.

Algorithm 2 Square and multiply
Require: x = (xt, . . . , x0) ∈ N, a ∈ N
Ensure: ax mod n

1: y ← a
2: for (i = t− 1, i ≥ 0, i--) do
3: y ← y2 mod n
4: if (xi = 1) then
5: y ← y · a mod n
6: end if
7: end for
8: return y

The following tabular denotes the evaluation of the Square and Multiply algorithm. The
table is initialized in the first line with i = t = 6 and y = 1. There are t + 1 lines numbered
from t down to 0. The binary representation of x = (xt. . . . .x0) is given in column two.
Using those values the columns four and five are evaluated row by row. For each row the y
value is taken from the last column of the row above. The final value in the fifth column is
the result of ax mod n.

i xi y y2 mod n y2(1 + xi · (a− 1)) mod n
6 1 1 1 2
5 0 2 4 4
4 1 4 16 32
3 0 32 1024 ≡ 1 mod 341 1
2 1 1 1 2
1 0 2 4 4
0 1 4 16 32

The solution is 285 ≡ 32 mod 341.



Solution of Problem 23
Chinese Remainder Theorem:
Let m1, . . . , mr be pair-wise relatively prime, i.e., gcd(mi, mj) = 1 for all i 6= j ∈ {1, . . . , r},
and furthermore let a1, . . . , ar ∈ N. Then, the system of congruences

x ≡ ai (mod mi), i = 1, . . . , r,

has a unique solution modulo M =
r∏

i=1
mi given by

x ≡
r∑

i=1
aiMiyi (mod M), (1)

where Mi = M
mi

, yi = M−1
i (mod mi), for i = 1, . . . , r.

a) Show that (1) is a valid solution for the system of congruences:
Let i 6= j ∈ {1, . . . , r}. Since mj |Mi holds for all i 6= j, it follows:

Mi ≡ 0 (mod mj). (2)

Furthermore, we have yjMj ≡ 1 (mod mj).
Note that from coprime factors of M , we obtain:

gcd(Mj, mj) = 1⇒ ∃ yj ≡M−1
j (mod mj), (3)

and the solution of (1) modulo a corresponding mj can be simplified to:

x ≡
r∑

i=1
aiMiyi

(2)
≡ ajMjyj

(3)
≡ aj (mod mj).

b) Show that the given solution is unique for the system of congruences:
Assume that two different solutions y, z exist:

y ≡ ai (mod mi) ∧ z ≡ ai (mod mi), i = 1, . . . , r,

⇒ 0 ≡ (y − z) (mod mi)
⇒ mi | (y − z)
⇒M | (y − z), as m1, . . . , mr are relatively prime for i = 1, . . . , r,

⇒ y ≡ z (mod M).

This is a contradiction, therefore the solution is unique.


