Lehrstuhl für Theoretische Informationstechnik

Exercise 7 in Cryptography - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo2015-06-18

Solution of Problem 20

RNNTHAACHE

a) The bit error occurs in block C_i , i > 0, with blocksize BS.

mode	M_i	$\max \# err$	remark
ECB		BS	only block C_i is affected
CBC	$E_K^{-1}(C_i) \oplus C_{i-1}$	BS+1	C_i and one bit in C_{i+1}
OFB		1	one bit in C_i , as $Z_0 = C_0, Z_i = E_K(Z_{i-1})$
CFB	$C_i \oplus E_k(C_{i-1})$	BS+1	C_i and one bit in C_{i+1}
CTR	$C_i \oplus E_K(Z_i)$	1	one bit in $C_i, Z_0 = C_0, Z_i = Z_{i-1} + 1$

b) If one bit of the ciphertext is lost or an additional one is inserted in block C_i at position j, all bits beginning with the following positions may be corrupt:

mode	block	position
ECB	i	1
CBC	i	1
OFB	i	j
CFB	i	j
CTR	i	j

In ECB and CBC, all bits of blocks C_i , C_{i+1} may be corrupt.

In OFB, CFB, CTR, all bits beginning at position j of block C_i may be corrupt.

Solution of Problem 21

Let $n \in \mathbb{N}$, $a \in \mathbb{Z}_n^*$ with $\mathbb{Z}_n^* = \{b \in \mathbb{Z}_n \mid \gcd(b, n) = 1\}$. Consider the map $\Psi : \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ defined by $\Psi(x) = ax \mod n$, with $x \in \mathbb{Z}_n^*$.

- 1) Show that Ψ is well-defined, i.e., $\forall x \in \mathbb{Z}_n^* \Rightarrow ax \in \mathbb{Z}_n^*$. \mathbb{Z}_n^* is a multiplicative group, i.e., $\forall x \in \mathbb{Z}_n^*, \forall a \in \mathbb{Z}_n^* \Rightarrow (ax) \in \mathbb{Z}_n^*$. \Box
- 2) Show that Ψ is surjective, i.e., $\forall y \in \mathbb{Z}_n^* \exists x \in \mathbb{Z}_n^* : \Psi(x) = y$. $y \equiv ax \pmod{n} \Rightarrow a^{-1}y \equiv x \pmod{n} \Rightarrow \Psi(a^{-1}y) \equiv y \pmod{n}$. Since gcd(a, n) = 1 holds for all $a \Rightarrow \exists a^{-1} \pmod{n}$. \Box

- 3) Show that $\Psi(x)$ is injective, i.e., for $x \not\equiv y \Rightarrow \Psi(x) \not\equiv \Psi(y)$. Indirect proof: Let $ax \equiv ay \pmod{n}$. Since $\gcd(a, n) = 1 \Rightarrow \exists a^{-1} \in \mathbb{Z}_n^* : x \equiv y \pmod{n}$. \Box
- 4) From 2) and 3) $\Rightarrow \Psi(x)$ is bijective. \Box
- 5) Show that the inverse $a^{-1} \pmod{n}$ is unique. Indirect proof: Let $u \not\equiv v \in \mathbb{Z}_n^*$ be inverses of a, i.e., $ua \equiv 1 \pmod{n}$ and $va \equiv 1 \pmod{n}$ holds. But $u \equiv u(va) \equiv (ua)v \equiv v \pmod{n}$ is a contradiction \Rightarrow the inverse is unique. $\Rightarrow \forall a \in \mathbb{Z}_n^* \exists ! a^{-1} . \Box$
- 6) Show that $a^{\varphi(n)} \equiv 1 \pmod{n}$:

$$\begin{split} 1 &\equiv \underbrace{(\prod_{x \in \mathbb{Z}_n^*} x)(\prod_{x \in \mathbb{Z}_n^*} x^{-1})}_{\text{5) pairs of unique inverses}} \equiv \underbrace{(\prod_{x \in \mathbb{Z}_n^*} \Psi(x))}_{\text{4) bijective fct.}} (\prod_{x \in \mathbb{Z}_n^*} x^{-1}) \equiv (\prod_{x \in \mathbb{Z}_n^*} ax)(\prod_{x \in \mathbb{Z}_n^*} x^{-1}) \\ &\equiv a^{\varphi(n)}(\prod_{x \in \mathbb{Z}_n^*} x)(\prod_{x \in \mathbb{Z}_n^*} x^{-1}) \equiv a^{\varphi(n)} \pmod{n}. \end{split}$$

Solution of Problem 22

a) By the Miller-Rabin Primality Test it will be proven that 341 is composite. Write $n = 341 = 1 + 85 \cdot 2^2 = 1 + q \cdot 2^k$.

Algorithm 1 Miller-Rabin Primality Test (MRPT)

```
Write n = 1 + q2^k, q odd

Choose a \in \{2, ..., n-1\} uniformly distributed at random

y \leftarrow a^q \mod n

if (y = 1) OR (y = n - 1) then

return "n prime"

end if

for (i \leftarrow 1; i < k; i++) do

y \leftarrow y^2 \mod n

if (y = n - 1) then

return "n prime"

end if

end for

return "n composite"
```

Choose a = 2. Calculate $a^q \mod n$, i.e., $2^{85} \mod 341$. Note that $2^{10} = 1024 = 3 \cdot 341 + 1 \equiv 1 \mod 341$. It follows $2^{85} = (2^{10})^8 \cdot 2^5 \equiv 32 \mod 341$. Alternatively, $2^{85} \mod 341$ is calculated by Square and Multiply, see below. As $y = 32 \notin \{1, n-1\}$ the for-loop starts with i = 1. $y^2 = 32^2 = (2^5)^2 = 2^{10} \equiv 1 \mod 341$, see above. Furthermore, $y = 1 \neq 340 \mod 341$.

As i = 2 = k = 2 the for-loop terminates and n is stated as composite, which is a reliable result.

b) A number *n* is decomposed according to MRPT as $n = 1 + q 2^k$. It follows that MRPT has at most *k* squarings. The worst case occurs, if q = 1, then $n = 1 + 2^k \Leftrightarrow k = \log_2(n-1)$. With *n* having 300 digits it follows: $n < 10^{301} = (\underbrace{10^3}_{<2^{10}})^{100} \cdot \underbrace{10}_{<2^4} < 2^{1004} \Rightarrow$

 $k \le 1004.$

Consequently, less than 1004 squarings are needed. $(k \approx 999.9)$

Note, evaluating $a^q \mod n$ with Square and Multiply takes t squarings. But as $2^t \leq q$ holds, the worst case is reached, for equality which means t = 0, i.e., q = 1, as otherwise q would be not odd.

Determining $2^{85} \mod 341$ by Square and Multiply. It holds $a = 2, x = 85 = (1010101)_2$, i.e., t = 6.

Algorithm 2 Square and multiply

```
Require: x = (x_t, \ldots, x_0) \in \mathbb{N}, a \in \mathbb{N}

Ensure: a^x \mod n

1: y \leftarrow a

2: for (i = t - 1, i \ge 0, i - ) do

3: y \leftarrow y^2 \mod n

4: if (x_i = 1) then

5: y \leftarrow y \cdot a \mod n

6: end if

7: end for

8: return y
```

The following tabular denotes the evaluation of the Square and Multiply algorithm. The table is initialized in the first line with i = t = 6 and y = 1. There are t + 1 lines numbered from t down to 0. The binary representation of $x = (x_t, \ldots, x_0)$ is given in column two. Using those values the columns four and five are evaluated row by row. For each row the y value is taken from the last column of the row above. The final value in the fifth column is the result of $a^x \mod n$.

i	x_i	y	$y^2 \mod n$	$y^2(1+x_i\cdot(a-1)) \mod n$
6	1	1	1	2
5	0	2	4	4
4	1	4	16	32
3	0	32	$1024 \equiv 1 \mod 341$	1
2	1	1	1	2
1	0	2	4	4
0	1	4	16	32

The solution is $2^{85} \equiv 32 \mod 341$.

Solution of Problem 23

Chinese Remainder Theorem:

Let m_1, \ldots, m_r be pair-wise relatively prime, i.e., $gcd(m_i, m_j) = 1$ for all $i \neq j \in \{1, \ldots, r\}$, and furthermore let $a_1, \ldots, a_r \in \mathbb{N}$. Then, the system of congruences

$$x \equiv a_i \pmod{m_i}, \ i = 1, \dots, r,$$

has a unique solution modulo $M = \prod_{i=1}^{r} m_i$ given by

$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \pmod{M},\tag{1}$$

where $M_i = \frac{M}{m_i}, y_i = M_i^{-1} \pmod{m_i}$, for i = 1, ..., r.

a) Show that (1) is a valid solution for the system of congruences: Let $i \neq j \in \{1, ..., r\}$. Since $m_j \mid M_i$ holds for all $i \neq j$, it follows:

$$M_i \equiv 0 \pmod{m_i}.$$
 (2)

Furthermore, we have $y_j M_j \equiv 1 \pmod{m_j}$. Note that from coprime factors of M, we obtain:

$$gcd(M_j, m_j) = 1 \Rightarrow \exists y_j \equiv M_j^{-1} \pmod{m_j},$$
 (3)

and the solution of (1) modulo a corresponding m_i can be simplified to:

$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \stackrel{(2)}{\equiv} a_j M_j y_j \stackrel{(3)}{\equiv} a_j \pmod{m_j}$$

b) Show that the given solution is unique for the system of congruences: Assume that two different solutions y, z exist:

$$y \equiv a_i \pmod{m_i} \wedge z \equiv a_i \pmod{m_i}, \ i = 1, \dots, r,$$

$$\Rightarrow 0 \equiv (y - z) \pmod{m_i}$$

$$\Rightarrow m_i \mid (y - z)$$

$$\Rightarrow M \mid (y - z), \text{ as } m_1, \dots, m_r \text{ are relatively prime for } i = 1, \dots, r,$$

$$\Rightarrow y \equiv z \pmod{M}.$$

This is a contradiction, therefore the solution is unique.