Exercise 8 in Cryptography
 - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo 2015-06-25

Solution of Problem 24

Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ the Euler φ-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ with $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
a) Let $n=p$ be prime. It follows for the multiplicative group that:

$$
\mathbb{Z}_{p}^{*}=\left\{a \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\}=\{1,2, \ldots, p-1\} \Rightarrow \varphi(p)=p-1 .
$$

b) The power p^{k} has only one prime factor. So p^{k} has a common divisors that are not equal to one: These are only the multiples of p. For $1 \leq a \leq p^{k}$:

$$
1 \cdot p, \quad 2 \cdot p, \quad \ldots, \quad p^{k-1} \cdot p=p^{k}
$$

And it follows that

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1) .
$$

c) Let $n=p q$ for two primes $p \neq q$. It holds for $1 \leq a<p q$

1) $p|a \vee q| a \Rightarrow \operatorname{gcd}(a, p q)>1$, and
2) $p \nmid a \wedge q \nmid a \Rightarrow \operatorname{gcd}(a, p q)=1$.

It follows $\mathbb{Z}_{p q}^{*}=\underbrace{\{1 \leq a \leq p q-1\}}_{p q-1 \text { elements }} \backslash \underbrace{\{1 \leq a \leq p q-1|p| a\}}_{q-1 \text { elements }} \cup \underbrace{\{1 \leq a \leq p q-1|q| a\}}_{p-1 \text { elements }}]$.
Hence: $\varphi(p q)=(p q-1)-(q-1)-(p-1)=p q-p-q+1=(p-1)(q-1)=\varphi(p) \varphi(q)$.
d) Apply the Euler phi-function on n with the following steps:

1. Factorize all prime factors of the given n
2. Apply the rules in a) to c), correspondingly.

$$
\begin{aligned}
& \varphi(4913)=\varphi\left(17^{3}\right) \stackrel{(\mathrm{b})}{=} 17^{2}(17-1)=4624, \text { and } \\
& \varphi(899)=\varphi\left(30^{2}-1^{2}\right)=\varphi((30-1)(30+1))=\varphi(29 \cdot 31) \stackrel{(\mathrm{c})}{=} 28 \cdot 30=840 .
\end{aligned}
$$

Solution of Problem 25

a) Define event A : ' n composite' $\Leftrightarrow \bar{A}$: ' n prime'.

Define event $B: m$-fold MRPT provides ' n prime' in all m cases.
From hint: $\operatorname{Prob}(\bar{A})=\frac{2}{\ln (N)} \Rightarrow \operatorname{Prob}(A)=1-\frac{2}{\ln (N)}($ cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:

$$
\operatorname{Prob}(B \mid A) \leq\left(\frac{1}{4}\right)^{m}
$$

Probability of the MRPT verifying an actual prime is:

$$
\operatorname{Prob}(B \mid \bar{A})=1
$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:

$$
\begin{aligned}
p & =\operatorname{Prob}(A \mid B) \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B)} \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)+\operatorname{Prob}(B \mid \bar{A}) \cdot \operatorname{Prob}(\bar{A})} \\
& \leq \frac{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)}{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)+1 \cdot \frac{2}{\ln (N)}} \\
& =\frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}
\end{aligned}
$$

b) Note that the above function $f(x)=\frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}, a>0$, as its derivative is $f^{\prime}(x)=\frac{a}{(x+a)^{2}}>0$. Let $x=\ln (N)-2$, and $N=2^{512}$. Resolve the inequality w.r.t. m :

$$
\begin{aligned}
\frac{x}{x+2^{2 m+1}} & <\frac{1}{1000} \\
\Leftrightarrow 2^{2 m+1} & >999 x \\
\quad \Leftrightarrow m & >\frac{1}{2}\left(\log _{2}(999 x)-1\right) \\
& \Leftrightarrow m>\frac{1}{2}\left(\log _{2}(999(512 \ln (2)-2))-1\right) \\
\Leftrightarrow m & >8.714 .
\end{aligned}
$$

$m=9$ repetitions are needed to ensure that the error probability stays below $p=\frac{1}{1000}$ for $N=2^{512}$.

Solution of Problem 26

a) Let n be odd and composite. The problem is modelled by a geometric distributed random variable X with:

- Probability of a single test stating ' n is prime' although n is composite is p ($\Rightarrow 1-p$ for ' n is composite')
- Probability that after exactly $M \in \mathbb{N}$ tests, it correctly states ' p is composite':

$$
\operatorname{Prob}(X=M)=p^{M-1}(1-p)
$$

b) The expected value of a geometrically distributed random variable is:

$$
\mathrm{E}(X)=\sum_{M=1}^{\infty} M p^{M-1}(1-p)=(1-p) \frac{p}{(1-p)^{2}}=\frac{p}{1-p},
$$

Note that with the geometric series $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, we can compute its derivative w.r.t. x, and obtain $\sum_{n=1}^{\infty} n x^{n-1}=\frac{x}{(1-x)^{2}}$, for $|x|<1$.

For the given parameter $p=\frac{1}{4}$, the expected value for the number of tests stating that a composite n is indeed composite is:

$$
\mathrm{E}(X)=\frac{p}{1-p}=\frac{1 / 4}{1-1 / 4}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

Solution of Problem 27

a) " \Rightarrow " Let n with $n>1$ be prime. Then, each factor m of $(n-1)$! is in the multiplicative group \mathbb{Z}_{n}^{*}. Each factor m has a multiplicative inverse modulo n. The factors 1 and $n-1$ are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1 .

$$
(n-1)!\equiv \prod_{i=1}^{n-1} i \equiv \underbrace{(n-1)}_{\text {self-inv. }} \underbrace{(n-2) \cdot \ldots \cdot 3 \cdot 2}_{\text {pairs of inv. } \equiv 1} \cdot \underbrace{1}_{\text {self-inv. }} \equiv(n-1) \equiv-1 \quad \bmod n
$$

$" \Leftarrow "$ Let $n=a b$ and hence composite with $a, b \neq 1$ prime. Thus $a \mid n$ and $a \mid(n-1)!$. From $(n-1)!\equiv-1 \Rightarrow(n-1)!+1 \equiv 0$, we obtain $a|((n-1)!+1) \Rightarrow a| 1$ $\Rightarrow a=1 \Rightarrow n$ must be prime. \&
b) Compute the factorial of 28 :

$$
\begin{aligned}
& 28!=\overbrace{(28 \cdot 27)}^{2} \cdot \overbrace{(26 \cdot 25)}^{12} \cdot \overbrace{(24 \cdot 23)}^{1} \cdot \overbrace{(22 \cdot 21)}^{27} \cdot \overbrace{(20 \cdot 19)}^{3} \cdot \overbrace{(18 \cdot 17)}^{16} \\
& \underbrace{(16 \cdot 15)}_{8} \cdot \underbrace{(14 \cdot 13)}_{8} \cdot \underbrace{(12 \cdot 11)}_{16} \cdot \underbrace{(10 \cdot 9 \cdot 8)}_{24} \cdot \underbrace{(7 \cdot 6 \cdot 5 \cdot 4)}_{28} \cdot \underbrace{(3 \cdot 2)}_{6} \\
&=\underbrace{(2 \cdot 12 \cdot 1 \cdot 27 \cdot 3)}_{1} \cdot \underbrace{(16 \cdot 8 \cdot 8 \cdot 16)}_{-1} \cdot \underbrace{(24 \cdot 28 \cdot 6)}_{1} \equiv-1 \bmod 29
\end{aligned}
$$

Thus, 29 is prime as shown by Wilson's primality criterion.
c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.

