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Solution of Problem 36

a) Show that the Babystep-Giantstep-Algorithm computes the discrete logarithm.
b; =a’ mod p,
gi = Ba”™ mod p,
r=j+im modp—1
The equation b; = g; yields:
o = Ba™™ mod p
Q™ =3 mod p
o= modp
b) a being a primitive element of the group Z; means, all elements in the group 8 € Zj

have a representation as @™ mod p,n € {0,...,p — 1}. This guarantees existence
and uniqueness in the output of the algorithm.

Take for example a = 1, which is obviously no primitive element. Then, b; = 1Vj and
g; = B Vi. No value 8 # 1 has a solution for n. § =1 is the only possible value, but
the solution for n is not unique.

c) a®=0 modp, a=3,p=29, f=13.
Task: Compute x = log, () using the Babystep-Giantstep-Algorithm.
(1) m=1[29] =6

i/i 0[1]2]3]4]5
(2) bj =/ mod p 11319272311
(3)gi=pBa™™ modp |13 |25|28| 7 |9 |24

Note that o= = 10 mod p, since 3-10—1-29 =1 = o™ = 10° = 22 mod 29.
(4) For (j,i) = (2,4) = by = g4 = 9 holds
r=mi+j mod (p—1)
=6-44+2 mod 28
=26 mod 28

The discrete logarithm is x = 26.
(Check: 326 = 313313 =19.19 = 13 mod 29)



Remark on complexity:

Running: 2,/p =~ O(/p)
Bruteforce: O(p)

Solution of Problem 37

As given, we have the parameters a,b € Z and a’,b" € Z. Furthermore, we have M = ab—1,
the private key d = b’ M + b, and the public key (n,e) with e = a’M + a, and n = “17’1. By
substitution we obtain the following for n:

_ed—1
"TTM
(@M +a)(M +0b) -1
o M
B a't/ M? + a'bM + ab'M + ab — 1
M

=adbM+db+ab + 1.

a) The encryption operation is computing ¢ = em mod n. The decryption operation is

computing dc mod n. From dc = dem mod n = m mod n, it follows that de =1
mod n must hold:

de = (M +a)(b’M +b) mod n
=a't'M? +ab'M + a'bM +ab mod (a'b'M + ab' + ba' + 1)
=1 mod (a'b'M + ab' + ba" + 1).

For the given system, de =1 mod n is always true.

b) We consider an attack to break the private key d. Note that ¢, n,e are public.
Furthermore, since de = 1 mod n holds, it follows that ged(de,n) = 1. We can
compute the inverse of e modulo n using the Euclidean algorithm. As e™! =d mod n
holds, the private key is easily computed using the Euclidean algorithm.

Solution of Problem 38

a) The parameters of the given ElGamal cryptosystem are p = 3571, a = 2, y = 2905.

1) Check whether p is prime: Yes, use the MRPT in general or the exaustive search
in this simple case. Since /3571 > 59 it suffices to perform trial division for all
primes less or equal to 59.

2) Check whether a is a primitive element modulo p:
p—1
ar #Z1 (modp), Vi=1,... k,

with the prime factorization p — 1 = Hle pi as given in Proposition 7.5.



The prime factorization yields: 3570 = 2-1785 = 2-5-357 = 2-5-17-21 = p1papspa.
pr=2: 2™ (mod p) = —1,

pe="5: 2™ (mod p) = 2910,
p3=17: 2% (mod p) = 1847,
ps=21: 2% (mod p) = 2141.

a is a primitive element modulo p.
b) The first part of both ciphertexts is equal. Bob has chosen the same session key twice.

c) One message m; = 567 is given. We perform a known-plaintext attack.
Let ¢; = (¢1,¢2) and ¢y = (c3, ¢4).
The session key k is the same, since the ciphertexts ¢; and c3 are congruent:

¢, =cg=a" (mod p).
With y = a® (mod p), K is computed by:
K =vy*=a"" mod p,

in both cases.

For the known mq, ¢, and p we can compute K '

m; =K 'c; (mod p)

s K '=c'my (mod p),

and finally reveal ma:

my = cs K~ (mod p)

=cyc;'my (mod p).
For the given values, we have:

c;' =347 (mod 3571),
me = 1393 - 347 - 567  (mod 3571)
=678 (mod 3571).



