
Lehrstuhl für Theoretische Informationstechnik

Exercise 11 in Cryptography
- Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo
2015-07-16

Solution of Problem 36

a) Show that the Babystep-Giantstep-Algorithm computes the discrete logarithm.

bj = αj mod p,

gi = βα−im mod p,

x ≡ j + im mod p− 1

The equation bj ≡ gi yields:

αj ≡ βα−im mod p

αj+im ≡ β mod p

αx ≡ β mod p

b) a being a primitive element of the group Z∗p means, all elements in the group β ∈ Z∗p
have a representation as an mod p, n ∈ {0, . . . , p− 1}. This guarantees existence
and uniqueness in the output of the algorithm.
Take for example a = 1, which is obviously no primitive element. Then, bj = 1 ∀j and
gi = β ∀i. No value β 6= 1 has a solution for n. β = 1 is the only possible value, but
the solution for n is not unique.

c) αx ≡ β mod p, α = 3, p = 29, β = 13.
Task: Compute x = logα(β) using the Babystep-Giantstep-Algorithm.

(1) m = d29e = 6
i/j 0 1 2 3 4 5
(2) bj = αj mod p 1 3 9 27 23 11
(3) gi = βα−im mod p 13 25 28 7 9 24

Note that α−1 ≡ 10 mod p, since 3 · 10− 1 · 29 = 1⇒ α−m ≡ 106 ≡ 22 mod 29.
(4) For (j, i) = (2, 4)⇒ b2 = g4 = 9 holds

x = mi+ j mod (p− 1)
≡ 6 · 4 + 2 mod 28
≡ 26 mod 28

The discrete logarithm is x = 26.
(Check: 326 = 313313 ≡ 19 · 19 ≡ 13 mod 29)



Remark on complexity:
Running: 2√p ≈ O(√p)
Bruteforce: O(p)

Solution of Problem 37
As given, we have the parameters a, b ∈ Z and a′, b′ ∈ Z. Furthermore, we have M = ab− 1,
the private key d = b′M + b, and the public key (n, e) with e = a′M + a, and n = ed−1

M
. By

substitution we obtain the following for n:

n = ed− 1
M

= (a′M + a)(b′M + b)− 1
M

= a′b′M2 + a′bM + ab′M + ab− 1
M

= a′b′M + a′b+ ab′ + 1.

a) The encryption operation is computing c ≡ em mod n. The decryption operation is
computing dc mod n. From dc ≡ dem mod n

!≡ m mod n, it follows that de ≡ 1
mod n must hold:

de ≡ (a′M + a)(b′M + b) mod n

≡ a′b′M2 + ab′M + a′bM + ab mod (a′b′M + ab′ + ba′ + 1)
≡ 1 mod (a′b′M + ab′ + ba′ + 1).

For the given system, de ≡ 1 mod n is always true.

b) We consider an attack to break the private key d. Note that c, n, e are public.
Furthermore, since de ≡ 1 mod n holds, it follows that gcd(de, n) = 1. We can
compute the inverse of e modulo n using the Euclidean algorithm. As e−1 ≡ d mod n
holds, the private key is easily computed using the Euclidean algorithm.

Solution of Problem 38

a) The parameters of the given ElGamal cryptosystem are p = 3571, a = 2, y = 2905.

1) Check whether p is prime: Yes, use the MRPT in general or the exaustive search
in this simple case. Since

√
3571 > 59 it suffices to perform trial division for all

primes less or equal to 59.
2) Check whether a is a primitive element modulo p:

a
p−1
pi 6≡ 1 (mod p), ∀i = 1, . . . , k,

with the prime factorization p− 1 = ∏k
i=1 p

ti
i as given in Proposition 7.5.



The prime factorization yields: 3570 = 2·1785 = 2·5·357 = 2·5·17·21 = p1p2p3p4.

p1 = 2 : 21785 (mod p) ≡ −1,
p2 = 5 : 2714 (mod p) ≡ 2910,
p3 = 17 : 2210 (mod p) ≡ 1847,
p4 = 21 : 2170 (mod p) ≡ 2141.

a is a primitive element modulo p.

b) The first part of both ciphertexts is equal. Bob has chosen the same session key twice.

c) One message m1 = 567 is given. We perform a known-plaintext attack.
Let c1 = (c1, c2) and c2 = (c3, c4).
The session key k is the same, since the ciphertexts c1 and c3 are congruent:

c1 ≡ c3 ≡ ak (mod p).

With y = ax (mod p), K is computed by:

K = yk ≡ axk mod p,

in both cases.
For the known m1, c2 and p we can compute K−1:

m1 ≡ K−1c2 (mod p)
⇔ K−1 ≡ c−1

2 m1 (mod p),

and finally reveal m2:

m2 ≡ c4K
−1 (mod p)

≡ c4c
−1
2 m1 (mod p).

For the given values, we have:

c−1
2 ≡ 347 (mod 3571),
m2 ≡ 1393 · 347 · 567 (mod 3571)
≡ 678 (mod 3571).


