
Cryptography

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Jose Leon

Exercise 5
- Proposed Solution -

Friday, May 27, 2016

Solution of Problem 1
For an affine cipher in Z26: e(i, (a, b)) = a · i+ b mod 26

Z∗26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} = {a|gcd(a, 26) = 1}

⇒ |K| = |Z∗26 × Z26| = 12 · 26

Let M ∈M, C ∈ C

P (Ĉ = C|M̂ = M) = P (e(M̂, K̂) = C | M̂ = M)
(K̂,M stoch. ind.)= P (e(M, K̂) = C)

(K̂ unif. distr.)= 1
|K|
|{K ∈ K | e(M,K) = C}|

(∗)= 12
12 · 26 = 1

26

(∗) : e(M, (a, b)) = C ⇔ a ·M + b = C mod 26⇔ b = C − aM mod 26

⇒ all keys (a, C − aM), a ∈ Z∗26 satisfy this equation

⇒ P (Ĉ = C|M̂ = M) = 1
26 ∀M ∈M+

⇒ P (Ĉ = C) = 1
26 = P (Ĉ = C|M̂ = M)

With Corollary 4.11, the cryptosystem has perfect secrecy, i.e., Ĉ and M̂ are stochastically
independent.

Solution of Problem 2
Recall:

|M+| := {M ∈M+|P (M̂ = M > 0)}
|K+| := {K ∈ K+|P (K̂ = K > 0)}
|C+| := {C ∈ C+|P (Ĉ = C > 0)}



With Lemma 4.12 a):

|M+| ≤ |C+| ≤ |C| = |M| = |M+| =⇒ |C+| = |C| =⇒ C+ = C =⇒ P (Ĉ = C) > 0 ∀C ∈ C

LetM ∈M, C ∈ C

0 < P (Ĉ = C) = P (Ĉ = C| M̂ = M) = P (e(M̂, K̂) = C) M̂,K̂sto.ind= P (e(M, K̂) = C) =

=
∑

K∈K:e(M,K)=c

P (K̂ = K) 6= 0 =⇒ ∀M ∈M, C ∈ C, ∃K ∈ K : e(M,K) = C

FixM : |C+| = |C| = |{e(M,K)|K ∈ K+ = K}| ≤ |K| = |C| =⇒ It follows that K is unique !

LetM ∈M, C ∈ C,=⇒ P (Ĉ = C) = P (K̂ = K(M,C))
Because of perfect secrecy that is independent of M.

Fix Co ∈ C =⇒ {K(M,Co)|M ∈M} = K, due to the injectivity of e(·, K)
and the sets have the same order
=⇒ P (Ĉ = C) = P (K̂ = K) ∀C ∈ C, K ∈ K

=⇒ P (K̂ = K) = 1
|K|

Solution of Problem 3
Given: Alphabet A, blocklength n ∈ N andM = An = C.
An describes all possible streams of n bits.

a) An encryption is an injective function eK :M→ C, with K ∈ K.
Fix key K ∈ K. As e(·, K) is injective, it holds:

• {e(M,K) |M ∈M} ⊆ C
• {e(M,K) |M ∈M} =M
• SinceM = C ⇒ e(M, K) = C also surjective
• ⇒ e(M, K) is a bijective function.

A permutation π is a bijective (one-to-one) function π : X → X .
⇒ For each K, the encryption e(·, K) is a permutation with X = An.

b) With A = {0, 1} ⇒ |A| = |{0, 1}| = 2, and n = 6 there are N = 26 = 64 elements.
It follows that there are 64! ≈ 1.2689 · 1089 different block ciphers.



Solution of Problem 4

a) Show the validity of the complementation property: DES(M,K) = DES(M,K).
Consider each operation of the DES encryption for the complemented input. In order
to track the impact of the complemented input, we will introduce auxiliary variables
T1, U1, V1,W1.

• IP(M) = IP(M) = (L0, R0), permutation does not affect the complement
• E(R0) = E(R0) := T 1, the doubled/expanded bits are also complemented
• T1 ⊕K1 = T1 ⊕K1 := U1, XOR (⊕) of complements is unchanged

We have:
⊕ 0 1
0 0 1
1 1 0

and for the complements:
⊕ 0̄ 1̄
0̄ 0 1
1̄ 1 0

• S(U1) := V1 is unchanged w.r.t. the non-complementary case
• P(V1) := W1 is unchanged w.r.t. the non-complementary case
• W1 ⊕ L0 = R1, next input is just complemented
• L1 = R0 = L1, next input is just complemented
• ⇒ Thus, we obtain SBB(R1, L1) = SBB(R1, L1)
• Analogous iterations for each i = 2, ..., 16: (L1, R1)→ · · · → (L16, R16)
• IP−1(R16, L16), permutation does not affect the complement
• As a result, DES(M,K) = DES(M,K) X
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b) • In a brute-force attack, the amount of cases is halved since we can apply a chosen-
plaintext attack with M and M .

Solution of Problem 5

a) Let us first take a look at Table 5.1 (Permutation Choice 1). Which bits are used to
construct C0 and D0 from K0?
C0 is constructed from:

• Bits 1, 2, 3 of the first 4 bytes, and



• bits 1, 2, 3, 4 of the last 4 bytes

D0 is constructed from:

• Bits 4, 5, 6, 7 of the first 4 bytes, and
• bits 5, 6, 7 of the last 4 bytes

Note that this particular structure is also indicated by the given weak key.
This construction can also be seen in the following table:

1 2 3 4 5 6 7 b1

9 10 11 12 13 14 15 b2

17 18 19 20 21 22 23 b3

25 26 27 28 29 30 31 b4

33 34 35 36 37 38 39 b5

41 42 43 44 45 46 47 b6

49 50 51 52 53 54 55 b7

57 58 59 60 61 62 63 b8

C0 D0

When considering C0, read columnwise (bottom to top) and from left to right. Table 5.1
(PC1) has exactly the same sequence, i.e., we have discovered a part of its construction
principle. Similar steps are applied to construct D0.
When regarding the bit-sequence of the given round key K0 = 0x1F1F 1F1F 0E0E 0E0E,
we now easily see that:

• All bits of C0 are 0, and all bits of D0 are 1.
• For the given C0 and D0, cyclic shifting does not change the bits at all.
⇒ We obtain Ci = C0 and Di = D0 for all rounds i = 1, ..., 16.
⇒ All round keys are the same: K1 = K2 = . . . = K16.
• Since decryption in DES is executing the encryption with round keys in reverse

order, we observe that encryption acts identically to decryption for given weak key.
Thus, a twofold encryption with the weak key, yields the original plaintext:

DESK(DESK(M)) = M ∀M ∈M

b) In order to find further weak keys, we intend to produce K1 = K2 = . . . = K16. It
suffices to generate C0 and D0 such that they contain only either zeros or ones only. In
particular, we choose the bits K = XXXXY Y Y Y with the first 4 bytes X and the
last 4 bytes Y such that:

X = bbbcccc∗ , Y = bbbbccc∗ , b, c ∈ {0, 1} .



with ∗ fulfilling the corresponding parity check condition. Then C0 and D0 become

C0 = bb . . . b , D0 = cc . . . c

and it holds that
C0 = Cn , D0 = Dn ∀ 0 ≤ n ≤ 16 ,

because Cn, Dn are created by a cyclic shift of C0, D0 respectively.
The 4 weak keys are simply all possible cases of b, c ∈ {0, 1} with the proper parity bits:

K1 = 0x0101 0101 0101 0101 , b = c = 0 , d = e = 1
K2 = 0x1F1F 1F1F 0E0E 0E0E , b = 0 , c = 1 , d = 1 , e = 0
K3 = 0xE0E0 E0E0 F1F1 F1F1 , b = 1 , c = 0 , d = 0 , e = 1
K4 = 0xFEFE FEFE FEFE FEFE , b = c = 1 , d = e = 0


