Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 1

Friday, April 21, 2017

Problem 1. (Dividers) Let $a, b, c, d \in \mathbb{Z}$. The integer a divides b if and only if there exists a $k \in \mathbb{Z}$ such that $a \cdot k=b$. This property is denoted by $a \mid b$. Prove the following implications:
a) $a \mid b$ and $b|c \quad \Rightarrow \quad a| c$.
b) $a \mid b$ and $c|d \quad \Rightarrow \quad(a c)|(b d)$.
c) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \quad \forall x, y \in \mathbb{Z}$.

Problem 2. (Permutation Cipher) The plaintext is an English sentence. A permutation cipher with blocklength 8 revealed the following ciphertext

REXETSIH ONSICESI UCIFTFID REHTLIET

a) Decrypt the ciphertext and explain your approach.
b) Determine the corresponding permutations π and π^{-1}.

Problem 3. ($G C D$ Multiplicativity) Let $a, b, m \in \mathbb{Z}$. Show that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a b, m)=\operatorname{gcd}(a, m) \operatorname{gcd}(b, m)$.

