Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

## Exercise 2

Friday, May 5, 2017

Problem 1. (matrix inverse)
a) Prove the following equivalence:

$$
A \in \mathbb{Z}_{n}^{m \times m} \text { is invertible } \Longleftrightarrow \operatorname{gcd}(n, \operatorname{det}(\mathrm{~A}))=1
$$

b) Is the following matrix invertible? If yes, compute the inverse matrix.

$$
M=\left(\begin{array}{ll}
7 & 1 \\
9 & 2
\end{array}\right) \in \mathbb{Z}_{26}^{2 \times 2}
$$

Problem 2. (sequence of affine ciphers)
Suppose you encrypt a message $m \in \mathbb{Z}_{q}$ using an affine cipher $e_{k}(m)$ with key $k=(a, b) \in$ $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{q}$.
a) Compute the $n$-fold encryption $c=e_{k_{n}}\left(\ldots e_{k_{2}}\left(e_{k_{1}}(m)\right) \ldots\right)$ for different keys $k_{i}=\left(a_{i}, b_{i}\right)$ with $i=1, \ldots, n$.
b) Is there an advantage using $n$ subsequent encryptions, rather than using a single affine cipher? Substantiate your claim.

Problem 3. (number of keys) Compute the number of possible keys for the following cryptosystems:
a) Substitution cipher with the alphabet $\Sigma=\mathbb{Z}_{l}=\{0, \ldots, l-1\}$
b) Affine cipher with the alphabet $\Sigma=\mathbb{Z}_{26}=\{0, \ldots, 25\}$
c) Permutation cipher with a fixed blocklength $L$

