

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 5 Friday, May 19, 2017

Problem 1. We consider the Data Encryption Standard (DES) algorithm.

a) How can the same encryption algorithm of DES be used for decryption?

DES encrypts blocks of 64 bits using a key of 56 bits. For each 7 key bits, one (odd) parity bit for error detection is added. The key of a DES cipher is of the form:

$$K_0 = (k_1, \ldots, k_7, b_1, k_9, \ldots, k_{15}, b_2, k_{17}, \ldots, k_{57}, \ldots, k_{63}, b_8).$$

From this key K_0 , 16 round keys $K_1, K_2, ..., K_{16}$ are generated. The 56 key bits of K_0 are divided into two blocks C_0 and D_0 of 28 bits each as described in the left table below.

	1	2	3	4	5	6	7	b_1	
	9	10	11	12	13	14	15	b_2	
	17	18	19	20	21	22	23	b_3	
	25	26	27	28	29	30	31	b_4	
	33	34	35	36	37	38	39	b_5	
	41	42	43	44	45	46	47	b_6	
C_0	49	50	51	52	53	54	55	b_7	ſ
\mathbb{C}_0	57	58	59	60	61	62	63	b_8	

PC2											
14	17	11	24	1	5						
3	28	15	6	21	10						
23	19	12	4	26	8						
16	7	27	20	13	2						
41	52	31	37	47	55						
30	40	51	45	33	48						
44	49	39	56	34	53						
46	42	50	36	29	32						

 C_0 is read column-wise from 57 to 36 and D_0 column-wise from 63 to 4.

In a second step, C_n and D_n for n = 1, ..., 16, are each generated from C_{n-1} and D_{n-1} by a cyclic left-shift of s_n positions, where s_n is defined by:

 D_0

$$s_n = \begin{cases} 1, & \text{if } n \in \{1, 2, 9, 16\} \\ 2, & \text{otherwise} \end{cases}$$

From each of these (C_n, D_n) , with n = 1, ..., 16, one now selects 48 key bits as in the above table PC2 on the right to obtain K_n .

In the following, a particular pair of keys for DES is considered¹:

 $K_0 = (01 \text{FE 01FE 01FE 01FE}), \quad \hat{K}_0 = (\text{FE01 FE01 FE01 FE01})$

¹The keys are shown in hexadecimal representation.

- **b)** Determine (C_0, D_0) and (C_1, D_1) from K_0 , and (\hat{C}_0, \hat{D}_0) and (\hat{C}_1, \hat{D}_1) from \hat{K}_0 .
- c) Which of the generated subkeys $K_1, K_2, ..., K_{16}$ are identical when K_0 is used?
- **d**) Show that $\text{DES}_{\hat{K}_0}(\text{DES}_{K_0}(M)) = M$ holds for all $M \in \mathcal{M}$.

Problem 2. (*DES Complementation property*) Let M be a block of bits of length 64 and let K be a block of bits of length 56. Let DES(M, K) denote the encryption of M with key K using the DES cryptosystem. \overline{x} denotes the bitwise complement of a block x.

a) Show that the *complementation property* holds:

$$DES(M, K) = DES(\overline{M}, \overline{K})$$

- b) How does the complementation property help to attack DES?
- **Problem 3.** (*weak DES keys*) There are four so called *weak* DES keys. One of those keys is $K = 00011111\ 00011111\ 00011111\ 00001110\ 00001110\ 00001110\ 00001110$.
 - a) What happens if you use this key?
 - **b**) Can you find the other three weak keys?