Information Technology

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 5

Friday, May 19, 2017

Problem 1. We consider the Data Encryption Standard (DES) algorithm.
a) How can the same encryption algorithm of DES be used for decryption?

DES encrypts blocks of 64 bits using a key of 56 bits. For each 7 key bits, one (odd) parity bit for error detection is added. The key of a DES cipher is of the form:

$$
K_{0}=\left(k_{1}, \ldots, k_{7}, b_{1}, k_{9}, \ldots, k_{15}, b_{2}, k_{17}, \ldots, k_{57}, \ldots, k_{63}, b_{8}\right) .
$$

From this key $K_{0}, 16$ round keys $K_{1}, K_{2}, \ldots, K_{16}$ are generated. The 56 key bits of K_{0} are divided into two blocks C_{0} and D_{0} of 28 bits each as described in the left table below.

C_{0} is read column-wise from 57 to 36 and D_{0} column-wise from 63 to 4 .
In a second step, C_{n} and D_{n} for $n=1, \ldots, 16$, are each generated from C_{n-1} and D_{n-1} by a cyclic left-shift of s_{n} positions, where s_{n} is defined by:

$$
s_{n}= \begin{cases}1, & \text { if } n \in\{1,2,9,16\} \\ 2, & \text { otherwise }\end{cases}
$$

From each of these $\left(C_{n}, D_{n}\right)$, with $n=1, \ldots, 16$, one now selects 48 key bits as in the above table PC2 on the right to obtain K_{n}.

In the following, a particular pair of keys for DES is considered ${ }^{1}$:

$$
K_{0}=(01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE}), \quad \hat{K}_{0}=(\mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE} 01)
$$

[^0]b) Determine $\left(C_{0}, D_{0}\right)$ and $\left(C_{1}, D_{1}\right)$ from K_{0}, and $\left(\hat{C}_{0}, \hat{D}_{0}\right)$ and $\left(\hat{C}_{1}, \hat{D}_{1}\right)$ from \hat{K}_{0}.
c) Which of the generated subkeys $K_{1}, K_{2}, \ldots, K_{16}$ are identical when K_{0} is used?
d) Show that $\operatorname{DES}_{\hat{K}_{0}}\left(\operatorname{DES}_{K_{0}}(M)\right)=M$ holds for all $M \in \mathcal{M}$.

Problem 2. (DES Complementation property) Let M be a block of bits of length 64 and let K be a block of bits of length 56 . Let $\operatorname{DES}(M, K)$ denote the encryption of M with key K using the DES cryptosystem. \bar{x} denotes the bitwise complement of a block x.
a) Show that the complementation property holds:

$$
\operatorname{DES}(M, K)=\overline{\operatorname{DES}(\bar{M}, \bar{K})}
$$

b) How does the complementation property help to attack DES?

Problem 3. (weak DES keys) There are four so called weak DES keys. One of those keys is $K=0001111100011111000111110001111100001110000011100000111000001110$.
a) What happens if you use this key?
b) Can you find the other three weak keys?

[^0]: ${ }^{1}$ The keys are shown in hexadecimal representation.

