## Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

## Exercise 7

Friday, June 16, 2017

Problem 1. (AES mix columns) The step MixColumns of the AES scheme is given by $\boldsymbol{r}=\boldsymbol{T} \boldsymbol{c}$ with input $\boldsymbol{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, output $\boldsymbol{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, and the circulant matrix

$$
\boldsymbol{T}=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4 \times 4},
$$

for the polynomial field $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[X] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[X]$.
Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \bmod \left(u^{4}+1\right)=r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0}$.

Problem 2. (block ciphers are permutations) A block cipher is a cryptosystem where both plaintext and ciphertext space are the set $\mathcal{A}^{n}$ of words of length $n$ over an alphabet $\mathcal{A}$.
a) Show that the encryption functions of block ciphers are permutations.
b) How many different block ciphers exist if $\mathcal{A}=\{0,1\}$ and the block length is $n=6$ ?

Problem 3. (determine $\varphi$ ) Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be the Euler $\varphi$-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.
a) Determine $\varphi(p)$ for a prime $p$.
b) Determine $\varphi\left(p^{k}\right)$ for a prime $p$ and $k \in \mathbb{N}$.
c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
d) Determine $\varphi(4913)$ and $\varphi(899)$.

