Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 8

Friday, June 23, 2017

Problem 1. (Multiplicative property of $\phi(n))$ Let m, n be tow numbers such that $\operatorname{gcd}(m, n)=1$. Then

$$
\phi(m n)=\phi(m) \phi(n)
$$

Problem 2. (Carmichael number) Let n be composite, odd, no Carmichael number. Then

$$
\left|\left\{a \in \mathbb{Z}_{n} \backslash\{0\} \mid a^{n-1} \not \equiv 1 \quad(\bmod n)\right\}\right| \geq \frac{n}{2}
$$

Problem 3. (MRPT error probability) The Miller-Rabin Primality Test (MPRT) is applied m times, with $m \in \mathbb{N}$, to check whether n is prime. The number n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2 N\}, N \in \mathbb{N}$.
a) Show that $P(" n$ is composite" \mid MRPT returns m times $" n$ is prime" $) \leq \frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}$.
b) How many repetitions m are needed to ensure that the above probability stays below $1 / 1000$ for $N=2^{512}$?

Hint: Assume $P(" n$ is prime $")=2 / \ln (N)$.

