Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 11

Friday, July 7, 2017

Problem 1. (Shamir no-key protocol) Alice and Bob are using Shamir's no-key protocol to exchange a secret message. They agree to use the prime $p=31337$ for their communication. Alice chooses the random number $a=9999$ while Bob chooses $b=1011$. Alice's message is $m=3567$.
a) Calculate all exchanged values c_{1}, c_{2}, and c_{3} following the protocol.

Hint: You may use $6399{ }^{1011} \equiv 29872(\bmod 31337)$.

Problem 2. (Proof of 8.3) Let $n=p \cdot q, p \neq q$ be prime and x a non-trivial solution of $x^{2} \equiv 1(\bmod n)$, i.e., $x \not \equiv \pm 1(\bmod n)$.

Then

$$
\operatorname{gcd}(x+1, n) \in\{p, q\}
$$

Problem 3. (RSA encryption) A uniformly distributed message $m \in\{1, \ldots, n-1\}$ with $n=p q$ with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).
a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m$ or $q \mid m$.
b) Calculate the probability for m and n having common divisors.
c) How large is the probability of (b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

