



## Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

## Exercise 12 Friday, July 14, 2017

**Problem 1.** (exponential congruences) Let  $x, y \in \mathbb{Z}, a \in \mathbb{Z}_n^* \setminus \{1\}$ , and  $\operatorname{ord}_n(a) = \min\{k \in \{1, \dots, \varphi(n)\} \mid a^k \equiv 1 \mod n\}$ . Show that

$$a^x \equiv a^y \mod n \iff x \equiv y \mod \operatorname{ord}_n(a)$$
.

**Problem 2.** (How not to use the ElGamal cryptoystem) Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is (p, a, y) = (3571, 2, 2905). Bob encrypts the messages  $m_1$  and  $m_2$  as

$$C_1 = (1537, 2192)$$
 and  $C_2 = (1537, 1393)$ .

- a) Show that the public key is valid.
- **b)** What did Bob do wrong?
- c) The first message is given as  $m_1 = 567$ . Determine the message  $m_2$ .

**Problem 3.** (properties of quadratic residues) Let p be prime, g a primitive element modulo p and  $a, b \in \mathbb{Z}_p^*$ . Show the following:

- a) a is a quadratic residue modulo p if and only if there exists an even  $i \in \mathbb{N}_0$  with  $a \equiv g^i \mod p$ .
- b) If p is odd, then exactly one half of the elements  $x \in \mathbb{Z}_p^*$  are quadratic residues modulo p.
- c) The product  $a \cdot b$  is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

**Problem 4.** (Euler's criterion) Prove Euler's criterion (Proposition 9.2): Let p > 2 be prime, then

 $c \in \mathbb{Z}_p^*$  is a quadratic residue modulo  $p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \mod p$ .