

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 4 - Proposed Solution -Friday, May 19, 2017

Solution of Problem 1

Theorem 4.3 shall be proven.

a) X is a discrete random variable with $p_i = P(X = x_i), i = 1, ..., m$. It holds

$$H(X) = -\sum_{i} p_i \log(p_i) \ge 0,$$

as $p_i \ge 0$ and $-\log(p_i) \ge 0$ for $0 < p_i \le 1$ and $0 \cdot \log 0 = 0$ per definition. Equality holds, if all addends are zero, i.e.,

 $p_i \log(p_i) = 0 \Leftrightarrow p_i \in \{0, 1\} \quad i = 1, \dots, m,$

as $p_i > 0$ and $-\log(p_i) > 0$, thus, $-p_i \log(p_i) > 0$ for $0 < p_i < 1$.

b) It holds

$$H(X) - \log(m) = -\sum_{i} p_{i} \log(p_{i}) - \sum_{i=1} p_{i} \log(m)$$

$$= \sum_{i:p_{i}>0} p_{i} \log\left(\frac{1}{p_{i}m}\right)$$

$$= (\log e) \sum_{i:p_{i}>0} p_{i} \ln\left(\frac{1}{p_{i}m}\right)$$

$$\stackrel{\ln(x) \le x-1}{\le} (\log e) \sum_{i:p_{i}>0} p_{i} \left(\frac{1}{p_{i}m} - 1\right)$$

$$= (\log e) \sum_{i:p_{i}>0} \left(\frac{1}{m} - p_{i}\right) = 0$$

As $\ln(x) = x - 1$ only holds for x = 1 it follows that equality holds iff $p_i = 1/m$, $i = 1, \ldots, m$. In particular, as $p_i = \frac{1}{m}$, it follows $p_i > 0, i = 1, \ldots, m$.

c) Define for $i = 1, \ldots, m$ and $j = 1, \ldots, d$

$$p_{i|j} = P(X = x_i \mid Y = y_j).$$

Show $H(X \mid Y) - H(X) \leq 0$ which is equivalent to the claim.

$$H(X \mid Y) - H(X) = -\sum_{i,j} p_{i,j} \log(p_{i|j}) + \sum_{i} p_{i} \log(p_{i})$$
$$= -\sum_{i,j} p_{i,j} \log\left(\frac{p_{i,j}}{p_{j}}\right) + \sum_{i} \sum_{j} p_{i,j} \log(p_{i})$$
$$= (\log e) \sum_{i,j:p_{i,j}>0} p_{i,j} \ln\left(\frac{p_{i} p_{j}}{p_{i,j}}\right)$$
$$\stackrel{\ln(x) \le x-1}{\le} (\log e) \sum_{i,j:p_{i,j}>0} p_{i,j} \left(\frac{p_{i} p_{j}}{p_{i,j}} - 1\right)$$
$$= (\log e) \sum_{i,j:p_{i,j}>0} (p_{i} p_{j} - p_{i,j}) = 0$$

Note that from $p_{i,j} > 0$ it follows $p_i, p_j > 0$. Equality hold for $p_i p_j = p_{i,j}$ which is equivalent to X and Y being stochastically independent.

This means that the mutual information I(X, Y) = H(X) - H(X | Y) is nonnegative. d) It holds

$$H(X, Y) = -\sum_{i,j} p_{i,j} \log(p_{i,j})$$

= $-\sum_{i,j} p_{i,j} [\log(p_{i,j}) - \log(p_i) + \log(p_i)]$
= $-\sum_{i,j} p_{i,j} \log(\underbrace{\frac{p_{i,j}}{p_i}}_{p_{j|i}}) - \sum_{i} \sum_{j=p_i} p_{i,j} \log(p_i)$
= $H(Y \mid X) + H(X).$

e) It holds

$$H(X,Y) \stackrel{(d)}{=} H(X) + H(Y \mid X) \stackrel{(c)}{\leq} H(X) + H(Y)$$

with equality as in (c) iff X and Y are stochastically independent.

Solution of Problem 2

Show for any function $f: X(\Omega) \times Y(\Omega) \to \mathbb{R}$, that H(X, Y, f(X, Y)) = H(X, Y). By definition, we have:

$$H(X, Y, Z = f(X, Y)) \stackrel{\text{Def.}}{=} \sum_{X, Y, Z} P(X = x, Y = y, Z = z) \log \left(P(X = x, Y = y, Z = z) \right)$$

With

$$P(X = x, Y = y, Z = z) = \begin{cases} P(X = x, Y = y) & \text{, if } Z = f(X, Y) \\ 0 & \text{, if } Z \neq f(X, Y) \end{cases},$$

it follows that

$$H(X, Y, Z = f(X, Y)) = \sum_{X, Y} P(X = x, Y = y) \log(P(X = x, Y = y)) = H(X, Y).$$

Note: It holds $0 \cdot \log 0 = 0$.

Solution of Problem 3

Recall:

$$|\mathcal{M}_{+}| := \{ M \in \mathcal{M}_{+} | P(\hat{M} = M > 0) \}$$
$$|\mathcal{K}_{+}| := \{ K \in \mathcal{K}_{+} | P(\hat{K} = K > 0) \}$$
$$|\mathcal{C}_{+}| := \{ C \in \mathcal{C}_{+} | P(\hat{C} = C > 0) \}$$

With Lemma 4.12 a): $|\mathcal{M}_{+}| \leq |\mathcal{C}_{+}| \leq |\mathcal{C}| = |\mathcal{M}| = |\mathcal{M}_{+}| \Longrightarrow |\mathcal{C}_{+}| = |\mathcal{C}| \Longrightarrow \mathcal{C}_{+} = C \Longrightarrow P(\hat{C} = C) > 0 \quad \forall C \in \mathcal{C}$ Let $M \in \mathcal{M}, C \in \mathcal{C}$ $0 < P(\hat{C} = C) = P(\hat{C} = C | \hat{M} = M) = P(e(\hat{M}, \hat{K}) = C) \stackrel{\hat{M}, \hat{K}sto.ind}{=} P(e(M, \hat{K}) = C) =$ $= \sum_{K \in \mathcal{K}: e(M, K) = c} P(\hat{K} = K) \neq 0 \Longrightarrow \forall M \in \mathcal{M}, C \in \mathcal{C}, \exists K \in \mathcal{K}: e(M, K) = C$

Fix $M : |\mathcal{C}_+| = |\mathcal{C}| = |\{e(M, K) | K \in \mathcal{K}_+ = K\}| \le |\mathcal{K}| = |\mathcal{C}| \Longrightarrow$ It follows that K is unique !

Let $M \in \mathcal{M}, C \in \mathcal{C}, \Longrightarrow P(\hat{C} = C) = P(\hat{K} = K(M, C))$ Because of perfect secrecy that is independent of M.

Fix $C_o \in \mathcal{C} \Longrightarrow \{K(M, C_o) | M \in \mathcal{M}\} = \mathcal{K}$, due to the injectivity of $e(\cdot, K)$ and the sets have the same order

$$\implies P(\hat{C} = C) = P(\hat{K} = K) \quad \forall C \in \mathcal{C}, K \in \mathcal{K}$$
$$\implies P(\hat{K} = K) = \frac{1}{|\mathcal{K}|}$$