Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 4
 - Proposed Solution -

Friday, May 19, 2017

Solution of Problem 1

Theorem 4.3 shall be proven.
a) X is a discrete random variable with $p_{i}=P\left(X=x_{i}\right), i=1, \ldots, m$. It holds

$$
H(X)=-\sum_{i} p_{i} \log \left(p_{i}\right) \geq 0
$$

as $p_{i} \geq 0$ and $-\log \left(p_{i}\right) \geq 0$ for $0<p_{i} \leq 1$ and $0 \cdot \log 0=0$ per definition.
Equality holds, if all addends are zero, i.e.,

$$
p_{i} \log \left(p_{i}\right)=0 \Leftrightarrow p_{i} \in\{0,1\} \quad i=1, \ldots, m,
$$

as $p_{i}>0$ and $-\log \left(p_{i}\right)>0$, thus, $-p_{i} \log \left(p_{i}\right)>0$ for $0<p_{i}<1$.
b) It holds

$$
\begin{aligned}
H(X)-\log (m) & =-\sum_{i} p_{i} \log \left(p_{i}\right)-\underbrace{\sum_{i} p_{i}}_{=1} \log (m) \\
& =\sum_{i: p_{i}>0} p_{i} \log \left(\frac{1}{p_{i} m}\right) \\
& =(\log e) \sum_{i: p_{i}>0} p_{i} \ln \left(\frac{1}{p_{i} m}\right) \\
& \ln (x) \leq x-1 \\
& (\log e) \sum_{i: p_{i}>0} p_{i}\left(\frac{1}{p_{i} m}-1\right) \\
& =(\log e) \sum_{i: p_{i}>0}\left(\frac{1}{m}-p_{i}\right)=0
\end{aligned}
$$

As $\ln (x)=x-1$ only holds for $x=1$ it follows that equality holds iff $p_{i}=1 / m$, $i=1, \ldots, m$. In particular, as $p_{i}=\frac{1}{m}$, it follows $p_{i}>0, i=1, \ldots, m$.
c) Define for $i=1, \ldots, m$ and $j=1, \ldots, d$

$$
p_{i \mid j}=P\left(X=x_{i} \mid Y=y_{j}\right) .
$$

Show $H(X \mid Y)-H(X) \leq 0$ which is equivalent to the claim.

$$
\begin{aligned}
H(X \mid Y)-H(X) & =-\sum_{i, j} p_{i, j} \log \left(p_{i \mid j}\right)+\sum_{i} p_{i} \log \left(p_{i}\right) \\
& =-\sum_{i, j} p_{i, j} \log \left(\frac{p_{i, j}}{p_{j}}\right)+\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =(\log e) \sum_{i, j: p_{i, j}>0} p_{i, j} \ln \left(\frac{p_{i} p_{j}}{p_{i, j}}\right) \\
& \stackrel{\ln (x) \leq x-1}{\leq}(\log e) \sum_{i, j: p_{i, j}>0} p_{i, j}\left(\frac{p_{i} p_{j}}{p_{i, j}}-1\right) \\
& =(\log e) \sum_{i, j: p_{i, j}>0}\left(p_{i} p_{j}-p_{i, j}\right)=0
\end{aligned}
$$

Note that from $p_{i, j}>0$ it follows $p_{i}, p_{j}>0$. Equality hold for $p_{i} p_{j}=p_{i, j}$ which is equivalent to X and Y being stochastically independent.
This means that the mutual information $I(X, Y)=H(X)-H(X \mid Y)$ is nonnegative.
d) It holds

$$
\begin{aligned}
H(X, Y) & =-\sum_{i, j} p_{i, j} \log \left(p_{i, j}\right) \\
& =-\sum_{i, j} p_{i, j}\left[\log \left(p_{i, j}\right)-\log \left(p_{i}\right)+\log \left(p_{i}\right)\right] \\
& =-\sum_{i, j} p_{i, j} \log \underbrace{\left(\frac{p_{i, j}}{p_{i}}\right)}_{p_{j \mid i}}-\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =H(Y \mid X)+H(X) .
\end{aligned}
$$

e) It holds

$$
H(X, Y) \stackrel{(d)}{=} H(X)+H(Y \mid X) \stackrel{(c)}{\leq} H(X)+H(Y)
$$

with equality as in (c) iff X and Y are stochastically independent.

Solution of Problem 2

Show for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$, that $H(X, Y, f(X, Y))=H(X, Y)$.
By definition, we have:

$$
H(X, Y, Z=f(X, Y)) \stackrel{\text { Def. }}{=} \sum_{X, Y, Z} P(X=x, Y=y, Z=z) \log (P(X=x, Y=y, Z=z))
$$

With

$$
P(X=x, Y=y, Z=z)=\left\{\begin{array}{ll}
P(X=x, Y=y) & , \text { if } Z=f(X, Y) \\
0 & , \text { if } Z \neq f(X, Y)
\end{array},\right.
$$

it follows that

$$
H(X, Y, Z=f(X, Y))=\sum_{X, Y} P(X=x, Y=y) \log (P(X=x, Y=y))=H(X, Y)
$$

Note: It holds $0 \cdot \log 0=0$.

Solution of Problem 3

Recall:

$$
\begin{aligned}
\left|\mathcal{M}_{+}\right| & :=\left\{M \in \mathcal{M}_{+} \mid P(\hat{M}=M>0)\right\} \\
\left|\mathcal{K}_{+}\right| & :=\left\{K \in \mathcal{K}_{+} \mid P(\hat{K}=K>0)\right\} \\
\left|\mathcal{C}_{+}\right| & :=\left\{C \in \mathcal{C}_{+} \mid P(\hat{C}=C>0)\right\}
\end{aligned}
$$

With Lemma 4.12 a):

$$
\left|\mathcal{M}_{+}\right| \leq\left|\mathcal{C}_{+}\right| \leq|\mathcal{C}|=|\mathcal{M}|=\left|\mathcal{M}_{+}\right| \Longrightarrow\left|\mathcal{C}_{+}\right|=|\mathcal{C}| \Longrightarrow \mathcal{C}_{+}=C \Longrightarrow P(\hat{C}=C)>0 \quad \forall C \in \mathcal{C}
$$

Let $M \in \mathcal{M}, C \in \mathcal{C}$
$0<P(\hat{C}=C)=P(\hat{C}=C \mid \hat{M}=M)=P(e(\hat{M}, \hat{K})=C) \stackrel{\hat{M}, \hat{K} \text { sto.ind }}{=} P(e(M, \hat{K})=C)=$

$$
=\sum_{K \in \mathcal{K}: e(M, K)=c} P(\hat{K}=K) \neq 0 \Longrightarrow \forall M \in \mathcal{M}, C \in \mathcal{C}, \exists K \in \mathcal{K}: e(M, K)=C
$$

Fix $M:\left|\mathcal{C}_{+}\right|=|\mathcal{C}|=\left|\left\{e(M, K) \mid K \in \mathcal{K}_{+}=K\right\}\right| \leq|\mathcal{K}|=|\mathcal{C}| \Longrightarrow$ It follows that K is unique !
Let $M \in \mathcal{M}, C \in \mathcal{C}, \Longrightarrow P(\hat{C}=C)=P(\hat{K}=K(M, C))$
Because of perfect secrecy that is independent of M.
Fix $C_{o} \in \mathcal{C} \Longrightarrow\left\{K\left(M, C_{o}\right) \mid M \in \mathcal{M}\right\}=\mathcal{K}$, due to the injectivity of $e(\cdot, K)$ and the sets have the same order
$\Longrightarrow P(\hat{C}=C)=P(\hat{K}=K) \quad \forall C \in \mathcal{C}, K \in \mathcal{K}$
$\Longrightarrow P(\hat{K}=K)=\frac{1}{|\mathcal{K}|}$

