

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 5 - Proposed Solution -Friday, May 26, 2017

Solution of Problem 1

- a) DES decryption is the same as DES encryption with keys applied in the reversed order.
- **b)** With $K_0 = (01FE \ 01FE \ 01FE \ 01FE)$, we obtain:

	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
	0	0	0	0	0	0	0	1	
	1	1	1	1	1	1	1	0	
_ ↑	0	0	0	0	0	0	0	1	1
C_0	1	1	1	0 1 0 1 1 0 1 0 1	1	1	1	0	$ _{D_0}$
					L			1	

Thus we read (C_0, D_0) column-wise. (C_1, D_1) are computed by a cyclic left-shift by 1 position:

 $C_0 = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_2 = (AAAAAA)_{16}$ $D_0 = (1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010)_2 = (AAAAAA)_{16}$ $C_1 = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_2 = (555555)_{16}$ $D_1 = (0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101)_2 = (555555)_{16}$

For $\hat{K}_0 = (\text{FE01 FE01 FE01 FE01})$, we obtain (\hat{C}_0, \hat{D}_0) analogously. (\hat{C}_1, \hat{D}_1) are computed by a cyclic left-shift by 1 position:

$$\hat{C}_0 = (0101\ 0101\ 0101\ 0101\ 0101\ 0101\ 0101)_2 = (555555)_{16}$$
$$\hat{D}_0 = (0101\ 0101\ 0101\ 0101\ 0101\ 0101\ 0101)_2 = (555555)_{16}$$
$$\hat{C}_1 = (1010\ 1010\ 1010\ 1010\ 1010\ 1010\ 1010)_2 = (AAAAAA)_{16}$$
$$\hat{D}_1 = (1010\ 1010\ 1010\ 1010\ 1010\ 1010\ 1010)_2 = (AAAAAA)_{16}$$

We have $C_0 = D_0 = \hat{C}_1 = \hat{D}_1$ and $C_1 = D_1 = \hat{C}_0 = \hat{D}_0$.

- c) When K_0 is used, we obtain (C_0, D_0) as in (a). The bits of (C_{n-1}, D_{n-1}) are cyclically left-shifted by s_n positions to generate (C_i, D_i) for i = 1, ..., 16. Due to the structure of (C_0, D_0) , cyclic right-shifts provide only two different keys:
 - An even number of positions provides the identical key.
 - An odd number of positions provides the alternative key.

Thus from the definition of s_n for n = 1, ..., 16, we observe that:

$$K_1 = K_9 = K_{10} = K_{11} = K_{12} = K_{13} = K_{14} = K_{15},$$

 $K_2 = K_3 = K_4 = K_5 = K_6 = K_7 = K_8 = K_{16}$

Since \hat{K}_0 has the reverse ordering of K_0 , we obtain $\text{DES}_{\hat{K}_0}(\text{DES}_{K_0}(M)) = M$.

Solution of Problem 2

a) Show the validity of the complementation property: $DES(M, K) = \overline{DES(\overline{M}, \overline{K})}$.

Consider each operation of the DES encryption for the complemented input. In order to track the impact of the complemented input, we will introduce auxiliary variables T_1, U_1, V_1, W_1 .

- $\operatorname{IP}(\overline{M}) = \overline{\operatorname{IP}(M)} = (\overline{L_0}, \overline{R_0})$, permutation does not affect the complement
- $E(\overline{R_0}) = \overline{E(R_0)} := \overline{T}_1$, the doubled/expanded bits are also complemented
- $S(U_1) := V_1$ is unchanged w.r.t. the non-complementary case
- $P(V_1) := W_1$ is unchanged w.r.t. the non-complementary case
- $W_1 \oplus \overline{L_0} = \overline{R}_1$, next input is just complemented
- $L_1 = \overline{R_0} = \overline{L}_1$, next input is just complemented
- \Rightarrow Thus, we obtain $\text{SBB}(\overline{R}_1, \overline{L_1}) = \overline{\text{SBB}(R_1, L_1)}$
- Analogous iterations for each i = 2, ..., 16: $(\overline{L}_1, \overline{R}_1) \to \cdots \to (\overline{L_{16}}, \overline{R_{16}})$
- $\operatorname{IP}^{-1}(\overline{R_{16}}, \overline{L_{16}})$, permutation does not affect the complement
- As a result, $DES(\overline{M}, \overline{K}) = \overline{DES(M, K)} \checkmark$

• In a brute-force attack, the amount of cases is halved since we can apply a chosenplaintext attack with M and \overline{M} .

Solution of Problem 3

a) Let us first take a look at Table 5.1 (Permutation Choice 1). Which bits are used to construct C_0 and D_0 from K_0 ?

 C_0 is constructed from:

- Bits 1, 2, 3 of the first 4 bytes, and
- bits 1, 2, 3, 4 of the last 4 bytes

 D_0 is constructed from:

- Bits 4, 5, 6, 7 of the first 4 bytes, and
- bits 5, 6, 7 of the last 4 bytes

Note that this particular structure is also indicated by the given weak key. This construction can also be seen in the following table:

	1	2	3	4	5	6	7	b_1	
	9	10	11	4 12	13	14	15	b_2	
	17	18	19	20	21	22	23	b_3	
	25	26	27	28	29	30	31	b_4	
	33	34	35	36	37	38	39	b_5	
	41	42	43	44	45	46	47	b_6	
a^{\uparrow}	49	50	51	52	53	54	55	b_7	1 D
C_0	57	58	59	60	61	62	63	b_8	$ ^{D_0}$

When considering C_0 , read columnwise (bottom to top) and from left to right. Table 5.1 (PC1) has exactly the same sequence, i.e., we have discovered a part of its construction principle. Similar steps are applied to construct D_0 .

When regarding the bit-sequence of the given round key $K_0 = 0x1F1F$ 1F1F 0E0E 0E0E, we now easily see that:

- All bits of C_0 are 0, and all bits of D_0 are 1.
- For the given C₀ and D₀, cyclic shifting does not change the bits at all.
 ⇒ We obtain C_i = C₀ and D_i = D₀ for all rounds i = 1, ..., 16.
 ⇒ All round keys are the same: K₁ = K₂ = ... = K₁₆.
- Since decryption in DES is executing the encryption with round keys in reverse order, we observe that encryption acts identically to decryption for given weak key. Thus, a twofold encryption with the weak key, yields the original plaintext:

$$DES_K(DES_K(M)) = M \quad \forall M \in \mathcal{M}$$

b) In order to find further weak keys, we intend to produce $K_1 = K_2 = \ldots = K_{16}$. It suffices to generate C_0 and D_0 such that they contain only either zeros or ones only. In particular, we choose the bits K = XXXXYYYY with the first 4 bytes X and the last 4 bytes Y such that:

$$X = bbbcccc*, \quad Y = bbbbccc*, \quad b, c \in \{0, 1\}.$$

with * fulfilling the corresponding parity check condition. Then C_0 and D_0 become

$$C_0 = bb \dots b, \quad D_0 = cc \dots c$$

and it holds that

$$C_0 = C_n, \quad D_0 = D_n \quad \forall \, 0 \le n \le 16,$$

because C_n, D_n are created by a cyclic shift of C_0, D_0 respectively.

The 4 weak keys are simply all possible cases of $b, c \in \{0, 1\}$ with the proper parity bits:

$$\begin{split} K_1 &= \texttt{0x0101 0101 0101 0101}, \quad b = c = 0, \quad d = e = 1 \\ K_2 &= \texttt{0x1F1F 1F1F 0E0E 0E0E}, \quad b = 0, \quad c = 1, \quad d = 1, \quad e = 0 \\ K_3 &= \texttt{0xE0E0 E0E0 F1F1 F1F1}, \quad b = 1, \quad c = 0, \quad d = 0, \quad e = 1 \\ K_4 &= \texttt{0xFEFE FEFE FEFE FEFE}, \quad b = c = 1, \quad d = e = 0 \end{split}$$