Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 5
 - Proposed Solution -

Friday, May 26, 2017

Solution of Problem 1

a) DES decryption is the same as DES encryption with keys applied in the reversed order.
b) With $K_{0}=(01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE} 01 \mathrm{FE})$, we obtain:

Thus we read $\left(C_{0}, D_{0}\right)$ column-wise. $\left(C_{1}, D_{1}\right)$ are computed by a cyclic left-shift by 1 position:

$$
\begin{aligned}
& C_{0}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16} \\
& D_{0}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16} \\
& C_{1}=(0101010101010101010101010101)_{2}=(5555555)_{16} \\
& D_{1}=(0101010101010101010101010101)_{2}=(5555555)_{16}
\end{aligned}
$$

For $\hat{K}_{0}=($ FE01 FE01 FE01 FE01 $)$, we obtain $\left(\hat{C}_{0}, \hat{D}_{0}\right)$ analogously. $\left(\hat{C}_{1}, \hat{D}_{1}\right)$ are computed by a cyclic left-shift by 1 position:

$$
\begin{aligned}
& \hat{C}_{0}=(0101010101010101010101010101)_{2}=(5555555)_{16} \\
& \hat{D}_{0}=(0101010101010101010101010101)_{2}=(5555555)_{16} \\
& \hat{C}_{1}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16} \\
& \hat{D}_{1}=(1010101010101010101010101010)_{2}=(A A A A A A A)_{16}
\end{aligned}
$$

We have $C_{0}=D_{0}=\hat{C}_{1}=\hat{D}_{1}$ and $C_{1}=D_{1}=\hat{C}_{0}=\hat{D}_{0}$.
c) When K_{0} is used, we obtain $\left(C_{0}, D_{0}\right)$ as in (a). The bits of $\left(C_{n-1}, D_{n-1}\right)$ are cyclically left-shifted by s_{n} positions to generate $\left(C_{i}, D_{i}\right)$ for $i=1, \ldots, 16$. Due to the structure of (C_{0}, D_{0}), cyclic right-shifts provide only two different keys:

- An even number of positions provides the identical key.
- An odd number of positions provides the alternative key.

Thus from the definition of s_{n} for $n=1, \ldots, 16$, we observe that:

$$
\begin{aligned}
& K_{1}=K_{9}=K_{10}=K_{11}=K_{12}=K_{13}=K_{14}=K_{15} \\
& K_{2}=K_{3}=K_{4}=K_{5}=K_{6}=K_{7}=K_{8}=K_{16}
\end{aligned}
$$

d) The key K_{0} generates $\left(K_{1} \ldots K_{16}\right)=K_{1} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{2}$ The key \hat{K}_{0} generates $\left(\hat{K}_{1} \ldots \hat{K}_{16}\right)=K_{2} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{1} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{2} K_{1}$

Since \hat{K}_{0} has the reverse ordering of K_{0}, we obtain $\operatorname{DES}_{\hat{K}_{0}}\left(\operatorname{DES}_{K_{0}}(M)\right)=M$.

Solution of Problem 2

a) Show the validity of the complementation property: $\operatorname{DES}(M, K)=\overline{\operatorname{DES}(\bar{M}, \bar{K})}$.

Consider each operation of the DES encryption for the complemented input. In order to track the impact of the complemented input, we will introduce auxiliary variables $T_{1}, U_{1}, V_{1}, W_{1}$.

- $\operatorname{IP}(\bar{M})=\overline{\operatorname{IP}(M)}=\left(\overline{L_{0}}, \overline{R_{0}}\right)$, permutation does not affect the complement
- $\mathrm{E}\left(\overline{R_{0}}\right)=\overline{\mathrm{E}\left(R_{0}\right)}:=\bar{T}_{1}$, the doubled/expanded bits are also complemented
- $\overline{T_{1}} \oplus \overline{K_{1}}=T_{1} \oplus K_{1}:=U_{1}, \mathrm{XOR}(\oplus)$ of complements is unchanged

We have: \begin{tabular}{|c|cc|}
\hline\oplus \& 0 \& 1

\hline 0 \& 0 \& 1

1 \& 1 \& 0

\hline

 and for the complements:

\hline\oplus \& $\overline{0}$ \& $\overline{1}$

\hline$\overline{0}$ \& 0 \& 1

$\overline{1}$ \& 1 \& 0

\hline
\end{tabular}

- $\mathrm{S}\left(U_{1}\right):=V_{1}$ is unchanged w.r.t. the non-complementary case
- $\mathrm{P}\left(V_{1}\right):=W_{1}$ is unchanged w.r.t. the non-complementary case
- $W_{1} \oplus \overline{L_{0}}=\bar{R}_{1}$, next input is just complemented
- $L_{1}=\overline{R_{0}}=\bar{L}_{1}$, next input is just complemented
- \Rightarrow Thus, we obtain $\operatorname{SBB}\left(\bar{R}_{1}, \overline{L_{1}}\right)=\overline{\operatorname{SBB}\left(R_{1}, L_{1}\right)}$
- Analogous iterations for each $i=2, \ldots, 16:\left(\bar{L}_{1}, \bar{R}_{1}\right) \rightarrow \cdots \rightarrow\left(\overline{L_{16}}, \overline{R_{16}}\right)$
- $\mathrm{IP}^{-1}\left(\overline{R_{16}}, \overline{L_{16}}\right)$, permutation does not affect the complement
- As a result, $\operatorname{DES}(\bar{M}, \bar{K})=\overline{\operatorname{DES}(M, K)} \checkmark$

b) - In a brute-force attack, the amount of cases is halved since we can apply a chosenplaintext attack with M and \bar{M}.

Solution of Problem 3

a) Let us first take a look at Table 5.1 (Permutation Choice 1). Which bits are used to construct C_{0} and D_{0} from K_{0} ?
C_{0} is constructed from:

- Bits $1,2,3$ of the first 4 bytes, and
- bits $1,2,3,4$ of the last 4 bytes
D_{0} is constructed from:
- Bits $4,5,6,7$ of the first 4 bytes, and
- bits 5, 6, 7 of the last 4 bytes

Note that this particular structure is also indicated by the given weak key.
This construction can also be seen in the following table:

When considering C_{0}, read columnwise (bottom to top) and from left to right. Table 5.1 (PC1) has exactly the same sequence, i.e., we have discovered a part of its construction principle. Similar steps are applied to construct D_{0}.
When regarding the bit-sequence of the given round key $K_{0}=0 \times 1 F 1 \mathrm{~F} 1 \mathrm{~F} 1 \mathrm{~F}$ OEOE OEOE, we now easily see that:

- All bits of C_{0} are 0 , and all bits of D_{0} are 1 .
- For the given C_{0} and D_{0}, cyclic shifting does not change the bits at all.
\Rightarrow We obtain $C_{i}=C_{0}$ and $D_{i}=D_{0}$ for all rounds $i=1, \ldots, 16$.
\Rightarrow All round keys are the same: $K_{1}=K_{2}=\ldots=K_{16}$.
- Since decryption in DES is executing the encryption with round keys in reverse order, we observe that encryption acts identically to decryption for given weak key. Thus, a twofold encryption with the weak key, yields the original plaintext:

$$
\operatorname{DES}_{K}\left(\operatorname{DES}_{K}(M)\right)=M \quad \forall M \in \mathcal{M}
$$

b) In order to find further weak keys, we intend to produce $K_{1}=K_{2}=\ldots=K_{16}$. It suffices to generate C_{0} and D_{0} such that they contain only either zeros or ones only. In particular, we choose the bits $K=X X X X Y Y Y Y$ with the first 4 bytes X and the last 4 bytes Y such that:

$$
X=b b b c c c c *, \quad Y=b b b b c c c *, \quad b, c \in\{0,1\} .
$$

with $*$ fulfilling the corresponding parity check condition. Then C_{0} and D_{0} become

$$
C_{0}=b b \ldots b, \quad D_{0}=c c \ldots c
$$

and it holds that

$$
C_{0}=C_{n}, \quad D_{0}=D_{n} \quad \forall 0 \leq n \leq 16,
$$

because C_{n}, D_{n} are created by a cyclic shift of C_{0}, D_{0} respectively.
The 4 weak keys are simply all possible cases of $b, c \in\{0,1\}$ with the proper parity bits:

$$
\begin{array}{llll}
K_{1}=0 \times 010101010101 \text { 0101 }, & b=c=0, \quad d=e=1 \\
K_{2}=0 \times 1 \text { F1F 1F1F OEOE 0E0E }, & b=0, \quad c=1, \quad d=1, & e=0 \\
K_{3}=0 \times 50 E 0 \text { E0E0 F1F1 F1F1 }, & b=1, \quad c=0, \quad d=0, \quad e=1 \\
K_{4}=0 \times F E F E \text { FEFE FEFE FEFE }, & b=c=1, \quad d=e=0
\end{array}
$$

