Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

## Exercise 6 <br> - Proposed Solution -

Friday, June 2, 2017

## Solution of Problem 1

a) The bit error occurs in block $C_{i}, i>0$, with block size BS .

| mode | $M_{i}$ | max \#err | remark |
| :---: | :---: | :---: | :--- |
| ECB | $E_{K}^{-1}\left(C_{i}\right)$ | BS | only block $C_{i}$ is affected |
| CBC | $E_{K}^{-1}\left(C_{i}\right) \oplus C_{i-1}$ | BS+1 | $C_{i}$ and one bit in $C_{i+1}$ |
| OFB | $C_{i} \oplus Z_{i}$ | 1 | one bit in $C_{i}$, as $Z_{0}=C_{0}, Z_{i}=E_{K}\left(Z_{i-1}\right)$ |
| CFB | $C_{i} \oplus E_{k}\left(C_{i-1}\right)$ | BS+1 | $C_{i}$ and one bit in $C_{i+1}$ |
| CTR | $C_{i} \oplus E_{K}\left(Z_{i}\right)$ | 1 | one bit in $C_{i}, Z_{0}=C_{0}, Z_{i}=Z_{i-1}+1$ |

b) If one bit of the ciphertext is lost or an additional one is inserted in block $C_{i}$ at position $j$, all bits beginning with the following positions may be corrupt:

| mode | block | position |
| :---: | :---: | :---: |
| ECB | $i$ | 1 |
| CBC | $i$ | 1 |
| OFB | $i$ | $j$ |
| CFB | $i$ | $j$ |
| CTR | $i$ | $j$ |

In ECB and CBC, all bits of blocks $C_{i}, C_{i+1}$ may be corrupt.
In OFB, CFB, CTR, all bits beginning at position $j$ of block $C_{i}$ may be corrupt.

## Solution of Problem 2

The given AES-128 key is denoted in hexadecimal representation:

$$
K=(2 D 617269|65007661| 6 E 00436 C \mid 65656666)
$$

(a) The round key is $K_{0}=K=\left(W_{0} W_{1} W_{2} W_{3}\right)$ with $W_{0}=(2 D 617269)$, $W_{1}=$ (6500 7661 ) , $W_{2}=(6 E 00436 C), W_{3}=(65656666)$.
(b) To calculate the first 4 bytes of round key $K_{1}$ recall that $K_{1}=\left(W_{4} W_{5} W_{6} W_{7}\right)$.

Follow Alg. 1 as given in the lecture notes to calculate $W_{4}$ :

```
Algorithm 1 AES key expansion (applied)
    for \(i \leftarrow 4 ; i<4 \cdot(r+1) ; i++\) do
        Initialize for-loop with \(i \leftarrow 4\). We have \(r=1\) for \(K_{1}\).
        tmp \(\leftarrow W_{i-1}\)
        \(\mathrm{tmp} \leftarrow W_{3}=(65656666)\)
        if \((i \bmod 4=0)\) then
            result is true as \(i=4\).
                \(\operatorname{tmp} \leftarrow\) SubBytes \((\) RotByte \((t m p)) \oplus \operatorname{Rcon}(i / 4)\)
                Evaluate this operation step by step:
                RotByte(tmp) \(=(65666665)\), i.e., a cyclic left shift of one byte
                To compute SubBytes ( 656666 65) evaluate Table 5.8 for each byte:
                (row 6, col 5) provides \(77_{10}=4 D_{16}\)
                (row 6, col 6) provides \(51_{10}=33_{16}\)
                Note that the indexation of rows and columns starts with zero.
                SubBytes \((65666665)=(4 D 33334 D)\)
                \(i / 4=1\)
                \(\operatorname{Rcon}(1)=(\operatorname{RC}(1) 000000)\), with \(\operatorname{RC}(1)=x^{1-1}=x^{0}=1 \in \mathbb{F}_{2^{8}}\).
                \(\mathrm{tmp} \leftarrow(4 D 33334 D) \oplus(01000000)=(4 C 33334 D)\)
        end if
    \(W_{i} \leftarrow W_{i-4} \oplus \operatorname{tmp} W_{4} \leftarrow W_{0} \oplus \mathrm{tmp}\). Then, next iteration, \(i \leftarrow 5 \ldots\)
    end for
```

| $W_{0}$ | 2 | D | 6 | 1 | 7 | 2 | 6 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\oplus \mathrm{tmp}$ | 4 | C | 3 | 3 | 3 | 3 | 4 | D |
| $W_{0}$ | 0010 | 1101 | 0110 | 0001 | 0111 | 0010 | 0110 | 1001 |
| $\oplus \mathrm{tmp}$ | 0100 | 1100 | 0011 | 0011 | 0011 | 0011 | 0100 | 1101 |
| $W_{4}$ | 0110 | 0001 | 0101 | 0010 | 0100 | 0001 | 0010 | 0100 |
| $W_{4}$ | 6 | 1 | 5 | 2 | 4 | 1 | 2 | 4 |

## Solution of Problem 3

Message $\boldsymbol{m}=\left(m_{1} m_{2}, \ldots m_{l}\right)$, with $m_{i} \in \mathbb{F}_{2}$.
Key $\boldsymbol{k}=\left(k_{1} k_{2}, \ldots k_{n}\right)$, with $k_{i} \in \mathbb{F}_{2}$ and $n<l . \Rightarrow$ Keystream $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{l}\right)$

$$
\begin{aligned}
& z_{i}=k_{i}, \quad 1 \leq i \leq n \\
& z_{i}=\sum_{j=1}^{n} s_{j} z_{i j} \quad \bmod 2, \quad n<i \leq l \\
& c_{i}=z_{i} \oplus m_{i}, \quad 1 \leq i \leq l
\end{aligned}
$$

a) Decryption: $m_{i}=c_{i} \oplus z_{i}$
b) If $\boldsymbol{k}=\mathbf{0}=(00 \ldots 0)$, it follows $z_{i}=0, \quad 1 \leq i \leq n$, and $z_{i}=0, \quad n<i \leq l$ and $c_{i}=m_{i}, \quad 1 \leq i \leq l$. In this case, the plaintext is not encrypted at all.
c) key length $n=4$, key $\boldsymbol{k}=(0110)$,
addition paths $s_{1}=s_{4}=1, s_{2}=s_{3}=0 \Rightarrow s=(1001)$,
stream length $l=20$

| $z_{1}$ | $z_{2}$ | $z_{3}$ | $z_{4}$ | $z_{5}$ | $z_{6}$ | $z_{7}$ | $z_{8}$ | $z_{9}$ | $z_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| $z_{11}$ | $z_{12}$ | $z_{13}$ | $z_{14}$ | $z_{15}$ | $z_{16}$ | $z_{17}$ | $z_{18}$ | $z_{19}$ | $z_{20}$ |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

The summation simplifies to $z_{i}=\sum_{j=1}^{n} s_{j} z_{i j}=z_{i-1} \oplus z_{i-4}, 4<i \leq 20$

- $n$ provide registers $2^{n}$ states
- Maximal period: $p_{\max }=2^{n}-1=15$ (Minor remark: fulfilled if $z_{i}$ is a primitive polynomial)
- The keystream repeats itself at $z_{16}$


## encryption:

| $\boldsymbol{m}$ | 1011 | 0001 | 0100 | 1101 | 0100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{z}$ | 0110 | 0100 | 0111 | 1010 | 1100 |
| $\boldsymbol{m} \oplus \boldsymbol{z}$ | 1101 | 0101 | 0011 | 0111 | 1000 |

