Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 8
 - Proposed Solution -

Friday, June 23, 2017

Solution of Problem 1

(Multiplicative property of $\phi(n)$) Consider the set $\mathbb{Z}_{m n}=\{1, \ldots, m n\}$. If $x \in \mathbb{Z}_{m n}^{*}$ then $\operatorname{gcd}(x, m)=\operatorname{gcd}(x, n)=1$. The members of $\mathbb{Z}_{m n}$ can be written as $a m+b$ for $a \in\{0,1, \ldots, n-$ $1\}$ and $b \in\{1, \ldots, m\}$ namely:

$$
\begin{array}{cccc}
0 \times m+1 & 0 \times m+1 & \ldots & 0 \times m+m \\
1 \times m+1 & 1 \times m+1 & \ldots & 1 \times m+m \\
\vdots & \vdots & \ddots & \vdots \\
(n-1) \times m+1 & (n-1) \times m+1 & \ldots & (n-1) \times m+m
\end{array}
$$

For each $b_{i} \in \mathbb{Z}_{m}^{*}, a m+b_{i}$ is also relatively prime with respect to m for $a \in\{0,1, \ldots, n-1\}$. Hence in each row of the table above there are $\phi(m)$ numbers relatively prime with respect to m. These numbers correspond to the columns $b_{i} \in \mathbb{Z}_{m}^{*}$ of the table above.
Now consider the column $a m+b_{i}$ for $a \in\{0,1, \ldots, n-1\}$. Since $\operatorname{gcd}(m, n)=1$, all $a m+b_{i}$'s are n different numbers modulo n among which only $\phi(n)$ are relatively prime with respect to n. Therefore you have $\phi(m)$ columns and in each column $\phi(n)$ elements that are both relatively prime with respect to m and n. Therefore there are $\phi(m) \phi(n)$ numbers relatively prime to $m n$. Hence:

$$
\phi(m n)=\phi(m) \phi(n) .
$$

Solution of Problem 2

Consider the set $K_{n-1}:=\left\{a \in \mathbb{Z}_{n} \mid a^{n-1} \equiv 1(\bmod n)\right\}$. It holds that $K_{n-1} \subseteq Z_{n}^{*}$, as all $a \in K_{n-1}$ have multiplicative inverses. Furthermore K_{n-1} is a subgroup of \mathbb{Z}_{n}^{*}, because

- it is closed under multiplication,
- the multiplication is associative,
- $1 \in K_{n-1}$,
- the inverse of a, namely a^{n-2} is in K_{n-1}, as $\left(a^{n-2}\right)^{n-1}=\left(a^{n-1}\right)^{n-2} \equiv 1(\bmod n)$.

As a is not a Carmichael number, there exists $a \in \mathbb{Z}_{n}^{*}$ such that $a \notin K_{n-1}$, so K_{n-1} is a proper subgroup of \mathbb{Z}_{n}^{*}. By Lagrange's theorem it holds that

$$
\left|K_{n-1}\right| \text { divides }\left|\mathbb{Z}_{n}^{*}\right|,
$$

hence

$$
\left|K_{n-1}\right| \leq \frac{1}{2}\left|\mathbb{Z}_{n}^{*}\right| \leq \frac{n-2}{2} .
$$

Finally we conclude that

$$
\left|\mathbb{Z}_{n} \backslash\{0\} \backslash K_{n-1}\right| \geq n-1-\frac{n-2}{2}=\frac{n}{2} .
$$

Solution of Problem 3

a) Define event A : ' n composite' $\Leftrightarrow \bar{A}$: ' n prime'.

Define event $B: m$-fold MRPT provides ' n prime' in all m cases.
From hint: $\operatorname{Prob}(\bar{A})=\frac{2}{\ln (N)} \Rightarrow \operatorname{Prob}(A)=1-\frac{2}{\ln (N)}($ cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:

$$
\operatorname{Prob}(B \mid A) \leq\left(\frac{1}{4}\right)^{m}
$$

Probability of the MRPT verifying an actual prime is:

$$
\operatorname{Prob}(B \mid \bar{A})=1
$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:

$$
\begin{aligned}
p & =\operatorname{Prob}(A \mid B) \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B)} \\
& =\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)+\operatorname{Prob}(B \mid \bar{A}) \cdot \operatorname{Prob}(\bar{A})} \\
& \leq \frac{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)}{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)+1 \cdot \frac{2}{\ln (N)}} \\
& =\frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}
\end{aligned}
$$

b) Note that the above function $f(x)=\frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}, a>0$, as its derivative is $f^{\prime}(x)=\frac{a}{(x+a)^{2}}>0$. Let $x=\ln (N)-2$, and $N=2^{512}$. Resolve the inequality w.r.t. m :

$$
\begin{aligned}
\frac{x}{x+2^{2 m+1}} & <\frac{1}{1000} \\
\Leftrightarrow 2^{2 m+1} & >999 x \\
\quad \Leftrightarrow m & >\frac{1}{2}\left(\log _{2}(999 x)-1\right) \\
\Leftrightarrow m & >\frac{1}{2}\left(\log _{2}(999(512 \ln (2)-2))-1\right) \\
\Leftrightarrow m & >8.714 .
\end{aligned}
$$

$m=9$ repetitions are needed to ensure that the error probability stays below $p=\frac{1}{1000}$ for $N=2^{512}$.

