Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 9
 - Proposed Solution -

Friday, June 30, 2017

Solution of Problem 1

a) " \Rightarrow " Let n with $n>1$ be prime. Then, each factor m of $(n-1)$! is in the multiplicative group \mathbb{Z}_{n}^{*}. Each factor m has a multiplicative inverse modulo n. The factors 1 and $n-1$ are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1 .

$$
(n-1)!\equiv \prod_{i=1}^{n-1} i \equiv \underbrace{(n-1)}_{\text {self-inv. }} \underbrace{(n-2) \cdot \ldots \cdot 3 \cdot 2}_{\text {pairs of inv. } \equiv 1} \cdot \underbrace{1}_{\text {self-inv. }} \equiv(n-1) \equiv-1 \quad \bmod n
$$

$" \Leftarrow$ " Let $n=a b$ and hence composite with $a, b \neq 1$ prime. Thus $a \mid n$ and $a \mid(n-1)!$. From $(n-1)!\equiv-1 \Rightarrow(n-1)!+1 \equiv 0$, we obtain $a|((n-1)!+1) \Rightarrow a| 1 \Rightarrow a=1 \Rightarrow n$ must be prime. $\&$
b) Compute the factorial of 28 :

$$
\begin{aligned}
& 28!=\overbrace{(28 \cdot 27)}^{2} \cdot \overbrace{(26 \cdot 25)}^{12} \cdot \overbrace{(24 \cdot 23)}^{1} \cdot \overbrace{(22 \cdot 21)}^{27} \cdot \overbrace{(20 \cdot 19)}^{3} \cdot \overbrace{(18 \cdot 17)}^{16} \\
& \underbrace{(16 \cdot 15)}_{8} \cdot \underbrace{(14 \cdot 13)}_{8} \cdot \underbrace{(12 \cdot 11)}_{16} \cdot \underbrace{(10 \cdot 9 \cdot 8)}_{24} \cdot \underbrace{(7 \cdot 6 \cdot 5 \cdot 4)}_{28} \cdot \underbrace{(3 \cdot 2)}_{6} \\
&=\underbrace{(2 \cdot 12 \cdot 1 \cdot 27 \cdot 3)}_{1} \cdot \underbrace{(16 \cdot 8 \cdot 8 \cdot 16)}_{-1} \cdot \underbrace{(24 \cdot 28 \cdot 6)}_{1} \equiv-1 \bmod 29
\end{aligned}
$$

Thus, 29 is prime as shown by Wilson's primality criterion.
c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.

Solution of Problem 2

a) When $n=1043$ and $a=2$, the process of Pollard's $p-1$ algorithm is

b	d
$b_{1}=a \bmod 1403=2$	$d_{1}=\operatorname{gcd}(1,1403)=1$
$b_{2}=b_{1}^{2} \bmod 1403=4$	$d_{2}=\operatorname{gcd}(3,1403)=1$
$b_{3}=b_{2}^{3} \bmod 1403=64$	$d_{3}=\operatorname{gcd}(63,1403)=1$
$b_{4}=b_{3}^{4} \bmod 1403=142$	$d_{4}=\operatorname{gcd}(141,1403)=1$
$b_{5}=b_{4}^{5} \bmod 1403=794$	$d_{5}=\operatorname{gcd}(793,1403)=61$

Therefore, 61 is a non-trivial factor of 1403 and $1403=23 \times 61$
b) When $n=1081$ and $a=2$, the process of Pollard's $p-1$ algorithm is

b	d
$b_{1}=a \bmod 1081=2$	$d_{1}=\operatorname{gcd}(1,1081)=1$
$b_{2}=b_{1}^{2} \bmod 1081=4$	$d_{2}=\operatorname{gcd}(3,1081)=1$
$b_{3}=b_{2}^{3} \bmod 1081=64$	$d_{3}=\operatorname{gcd}(63,1081)=1$
$b_{4}=b_{3}^{4} \bmod 1081=96$	$d_{4}=\operatorname{gcd}(95,1081)=1$
$b_{5}=b_{4}^{5} \bmod 1081=173$	$d_{5}=\operatorname{gcd}(172,1081)=1$
$b_{6}=b_{5}^{6} \bmod 1081=1021$	$d_{6}=\operatorname{gcd}(1020,1081)=1$
$b_{7}=b_{6}^{7} \bmod 1081=1038$	$d_{7}=\operatorname{gcd}(1037,1081)=1$
$b_{8}=b_{7}^{8} \bmod 1081=413$	$d_{8}=\operatorname{gcd}(412,1081)=1$
$b_{9}=b_{8}^{9} \bmod 1081=784$	$d_{9}=\operatorname{gcd}(783,1081)=1$
$b_{10}=b_{9}^{10} \bmod 1081=873$	$d_{10}=\operatorname{gcd}(872,1081)=1$
$b_{11}=b_{10}^{11} \bmod 1081=441$	$d_{11}=\operatorname{gcd}(440,1081)=1$
$b_{12}=b_{11}^{12} \bmod 1081=501$	$d_{12}=\operatorname{gcd}(500,1081)=1$
$b_{13}=b_{12}^{13} \bmod 1081=898$	$d_{13}=\operatorname{gcd}(897,1081)=23$

Therefore, 23 is a non-trivial factor of 1081 and $1081=23 \times 47$
c) If a composite $n=p \cdot q$, where p and q are primes, then the Pollard's $p-1$ algorithm can be prevented if $p-1$ and $q-1$ both have at least one large prime factor. Because this algorithm is only efficiency when $p-1$ has all its prime factors $\leq B$. Thus, when $p-1$ and $q-1$ contain at least one large prime factor for each of them, the value of B must be larger or equal to the largest prime factor.

Solution of Problem 3

Chinese Remainder Theorem:

Let m_{1}, \ldots, m_{r} be pair-wise relatively prime, i.e., $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j \in\{1, \ldots, r\}$, and furthermore let $a_{1}, \ldots, a_{r} \in \mathbb{N}$. Then, the system of congruences

$$
x \equiv a_{i} \quad\left(\bmod m_{i}\right), i=1, \ldots, r
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
\begin{equation*}
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M) \tag{1}
\end{equation*}
$$

where $M_{i}=\frac{M}{m_{i}}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right)$, for $i=1, \ldots, r$.
a) Show that (1) is a valid solution for the system of congruences:

Let $i \neq j \in\{1, \ldots, r\}$. Since $m_{j} \mid M_{i}$ holds for all $i \neq j$, it follows:

$$
\begin{equation*}
M_{i} \equiv 0 \quad\left(\bmod m_{j}\right) \tag{2}
\end{equation*}
$$

Furthermore, we have $y_{j} M_{j} \equiv 1\left(\bmod m_{j}\right)$.
Note that from coprime factors of M, we obtain:

$$
\begin{equation*}
\operatorname{gcd}\left(M_{j}, m_{j}\right)=1 \Rightarrow \exists y_{j} \equiv M_{j}^{-1} \quad\left(\bmod m_{j}\right) \tag{3}
\end{equation*}
$$

and the solution of (1) modulo a corresponding m_{j} can be simplified to:

$$
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \stackrel{(2)}{=} a_{j} M_{j} y_{j} \stackrel{(3)}{=} a_{j} \quad\left(\bmod m_{j}\right)
$$

b) Show that the given solution is unique for the system of congruences:

Assume that two different solutions y, z exist:

$$
\begin{aligned}
& y \equiv a_{i} \quad\left(\bmod m_{i}\right) \wedge z \equiv a_{i} \quad\left(\bmod m_{i}\right), i=1, \ldots, r, \\
\Rightarrow & 0 \equiv(y-z) \quad\left(\bmod m_{i}\right) \\
\Rightarrow & m_{i} \mid(y-z) \\
\Rightarrow & M \mid(y-z), \text { as } m_{1}, \ldots, m_{r} \text { are relatively prime for } i=1, \ldots, r, \\
\Rightarrow & y \equiv z \quad(\bmod M)
\end{aligned}
$$

This is a contradiction, therefore the solution is unique.

