

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Qinwei He

Exercise 9 - Proposed Solution -Friday, June 30, 2017

Solution of Problem 1

a) " \Rightarrow " Let *n* with n > 1 be prime. Then, each factor *m* of (n-1)! is in the multiplicative group \mathbb{Z}_n^* . Each factor *m* has a multiplicative inverse modulo *n*. The factors 1 and n-1 are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1.

$$(n-1)! \equiv \prod_{i=1}^{n-1} i \equiv \underbrace{(n-1)}_{\text{self-inv.}} \underbrace{(n-2) \cdot \dots \cdot 3 \cdot 2}_{\text{pairs of inv.} \equiv 1} \cdot \underbrace{1}_{\text{self-inv.}} \equiv (n-1) \equiv -1 \mod n$$

- "⇐" Let n = ab and hence composite with $a, b \neq 1$ prime. Thus a|n and a|(n-1)!. From $(n-1)! \equiv -1 \Rightarrow (n-1)! + 1 \equiv 0$, we obtain $a|((n-1)! + 1) \Rightarrow a|1 \Rightarrow a = 1 \Rightarrow n$ must be prime. $\frac{1}{2}$
- **b)** Compute the factorial of 28:

$$28! = \underbrace{\overbrace{(28 \cdot 27)}^{2} \cdot \overbrace{(26 \cdot 25)}^{12} \cdot \overbrace{(24 \cdot 23)}^{1} \cdot \overbrace{(22 \cdot 21)}^{27} \cdot \overbrace{(20 \cdot 19)}^{3} \cdot \overbrace{(18 \cdot 17)}^{16}}_{(18 \cdot 17)} \\ \underbrace{\underbrace{(16 \cdot 15)}_{8} \cdot \underbrace{(14 \cdot 13)}_{8} \cdot \underbrace{(12 \cdot 11)}_{16} \cdot \underbrace{(10 \cdot 9 \cdot 8)}_{24} \cdot \underbrace{(7 \cdot 6 \cdot 5 \cdot 4)}_{28} \cdot \underbrace{(3 \cdot 2)}_{6}}_{2} \\ = \underbrace{(2 \cdot 12 \cdot 1 \cdot 27 \cdot 3)}_{1} \cdot \underbrace{(16 \cdot 8 \cdot 8 \cdot 16)}_{-1} \cdot \underbrace{(24 \cdot 28 \cdot 6)}_{1} \equiv -1 \mod 29$$

Thus, 29 is prime as shown by Wilson's primality criterion.

c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.

Solution of Problem 2

a) When n = 1043 and a = 2, the process of Pollard's p - 1 algorithm is

b	d
$b_1 = a \mod 1403 = 2$	$d_1 = \gcd(1, 1403) = 1$
$b_2 = b_1^2 \mod 1403 = 4$	$d_2 = \gcd(3, 1403) = 1$
$b_3 = b_2^3 \mod 1403 = 64$	$d_3 = \gcd(63, 1403) = 1$
$b_4 = b_3^4 \mod 1403 = 142$	$d_4 = \gcd(141, 1403) = 1$
$b_5 = b_4^5 \mod 1403 = 794$	$d_5 = \gcd(793, 1403) = 61$

Therefore, 61 is a non-trivial factor of 1403 and $1403 = 23 \times 61$

b) When n = 1081 and a = 2, the process of Pollard's p - 1 algorithm is

b	d
$b_1 = a \mod 1081 = 2$	$d_1 = \gcd(1, 1081) = 1$
$b_2 = b_1^2 \mod 1081 = 4$	$d_2 = \gcd(3, 1081) = 1$
$b_3 = b_2^3 \mod 1081 = 64$	$d_3 = \gcd(63, 1081) = 1$
$b_4 = b_3^4 \mod 1081 = 96$	$d_4 = \gcd(95, 1081) = 1$
$b_5 = b_4^5 \mod 1081 = 173$	$d_5 = \gcd(172, 1081) = 1$
$b_6 = b_5^6 \mod 1081 = 1021$	$d_6 = \gcd(1020, 1081) = 1$
$b_7 = b_6^7 \mod 1081 = 1038$	$d_7 = \gcd(1037, 1081) = 1$
$b_8 = b_7^8 \mod 1081 = 413$	$d_8 = \gcd(412, 1081) = 1$
$b_9 = b_8^9 \mod 1081 = 784$	$d_9 = \gcd(783, 1081) = 1$
$b_{10} = b_9^{10} \mod 1081 = 873$	$d_{10} = \gcd(872, 1081) = 1$
$b_{11} = b_{10}^{11} \mod 1081 = 441$	$d_{11} = \gcd(440, 1081) = 1$
$b_{12} = b_{11}^{12} \bmod 1081 = 501$	$d_{12} = \gcd(500, 1081) = 1$
$b_{13} = b_{12}^{13} \mod 1081 = 898$	$d_{13} = \gcd(897, 1081) = 23$

Therefore, 23 is a non-trivial factor of 1081 and $1081 = 23 \times 47$

c) If a composite $n = p \cdot q$, where p and q are primes, then the Pollard's p-1 algorithm can be prevented if p-1 and q-1 both have at least one large prime factor. Because this algorithm is only efficiency when p-1 has all its prime factors $\leq B$. Thus, when p-1 and q-1 contain at least one large prime factor for each of them, the value of B must be larger or equal to the largest prime factor.

Solution of Problem 3

Chinese Remainder Theorem:

Let m_1, \ldots, m_r be pair-wise relatively prime, i.e., $gcd(m_i, m_j) = 1$ for all $i \neq j \in \{1, \ldots, r\}$, and furthermore let $a_1, \ldots, a_r \in \mathbb{N}$. Then, the system of congruences

$$x \equiv a_i \pmod{m_i}, \ i = 1, \dots, r,$$

has a unique solution modulo $M = \prod_{i=1}^r m_i$ given by

$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \pmod{M},\tag{1}$$

where $M_i = \frac{M}{m_i}, y_i = M_i^{-1} \pmod{m_i}$, for i = 1, ..., r.

a) Show that (1) is a valid solution for the system of congruences:

Let $i \neq j \in \{1, \ldots, r\}$. Since $m_j \mid M_i$ holds for all $i \neq j$, it follows:

$$M_i \equiv 0 \pmod{m_i}.$$
 (2)

Furthermore, we have $y_j M_j \equiv 1 \pmod{m_j}$.

Note that from coprime factors of M, we obtain:

$$\gcd(M_j, m_j) = 1 \Rightarrow \exists y_j \equiv M_j^{-1} \pmod{m_j}, \tag{3}$$

and the solution of (1) modulo a corresponding m_j can be simplified to:

$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \stackrel{(2)}{\equiv} a_j M_j y_j \stackrel{(3)}{\equiv} a_j \pmod{m_j}.$$

b) Show that the given solution is unique for the system of congruences: Assume that two different solutions y, z exist:

$$y \equiv a_i \pmod{m_i} \wedge z \equiv a_i \pmod{m_i}, \ i = 1, \dots, r,$$

$$\Rightarrow 0 \equiv (y - z) \pmod{m_i}$$

$$\Rightarrow m_i \mid (y - z)$$

$$\Rightarrow M \mid (y - z), \text{ as } m_1, \dots, m_r \text{ are relatively prime for } i = 1, \dots, r,$$

$$\Rightarrow y \equiv z \pmod{M}.$$

This is a contradiction, therefore the solution is unique.