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Problem 1. (15 points)

a) Using Euler’s criterion, −1 is a quadratic residue iff (−1) p−1
2 = 1, which means p−1

2 = 2k
or p = 4k + 1. (3P)

b) From Wilson’s theorem, it is known that: (3P Bonus)

(p− 1)! ≡ −1 mod p.

On the other hand see that:
p− 1

2 ≡ −p+ 1
2 mod p

p− 3
2 ≡ −p+ 3

2 mod p

. . . . . .

1 ≡ −(p− 1) mod p.

Therefore:
(p− 1)! ≡ (−1)

p−1
2

((
p− 1

2

)
!
)2

mod p.

If 4|p− 1, then the previous equia implies that :

−1 ≡
((

p− 1
2

)
!
)2

mod p.

c) Use chinese remainder theorem for two solutions
(

p−1
2

)
! and

(
q−1

2

)
!. (5P)

d) One way is to find a from a2 ≡ −1 mod n and then finding c/a. (3P) An easier way
for decryption is simply by −c2 mod n. It requires that n be known at the decoder.
(1P) Bonus

e) Since n|a2 + 1, one can look at prime decomposition of a2 + 1 to find possible n = pq.
The attack is difficult since the decomposition is difficult. Moreover there might be
multiple possibilities for n. (4P)





Problem 2. (15 points)

a) (3P)

H(Ĉ|M̂ = M) = −
∑
C∈C

P (Ĉ = C|M̂ = M) logP (Ĉ = C|M̂ = M)

= −(1− ε) log(1− ε)− ε log( ε

|K| − 1).

This is independent of P (M̂ = M), therefore:

H(Ĉ|M̂) =
∑

M∈M
P (M̂ = M)H(Ĉ|M̂ = M) = −(1− ε) log(1− ε)− ε log( ε

|K| − 1).

b) Using conditioning on M̂ : (4P)

P (Ĉ = C) =
∑

P (M̂ = M)P (Ĉ = C|M̂ = M) = (1−ε)P (M̂ = C)+ ε

|K| − 1P (M̂ 6= C).

Now see that H(M̂)−H(M̂ |Ĉ) = H(Ĉ)−H(Ĉ|M̂).
If M̂ is uniformly distributed, then:

P (Ĉ = C) = (1− ε) 1
|M|

+ ε

|K| − 1
|M| − 1
|M|

.

Since |M| = |K|, Ĉ is uniformly distributed and :
H(Ĉ) = log |K|.

Therefore:

H(M̂)−H(M̂ |Ĉ) = log |K|+ (1− ε) log(1− ε) + ε log( ε

|K| − 1)

= log |K| − ε log(|K| − 1) + (1− ε) log(1− ε) + ε log(ε)
= log |K| − ε log(|K| − 1)− hb(ε),

where hb(ε) = −(1 − ε) log(1 − ε) − ε log(ε) is the entropy of a Bernoulli RV with
parameter ε.

c) log |K| − ε log(|K| − 1) = (1 − ε) log |K| + ε log( |K||K|−1). When |K| is large log( |K||K|−1) is
small and the dominant term is (1− ε) log |K|. (3P)

d) When ε = 0, then H(M̂)−H(M̂ |Ĉ) = H(M̂), because we have an identity mapping.
When ε = 1, we have: (3P)

H(M̂)−H(M̂ |Ĉ) = log( |K|
|K| − 1).

As |K| grows large, log( |K||K|−1) tends to zero and the system approaches the perfect
secrecy.

e) The perfect secrecy is achieved when P (Ĉ = C|M̂ = M) does not depend on M and C.
Hence: (2P)

1− ε = ε

|K| − 1 =⇒ ε = |K| − 1
|K|

.





Problem 3. (15 points)

a) The steps for the AES128 encryption are: (3P)

• Having a key size of 128 bits −→ we have r = 10 rounds
• The steps for the rounds 1, . . . , r − 1 consist on the following:

– SubBytes (SB)
– ShiftRows (SR)
– MixColums (MC)
– AddRoundKey (ARC)

• The last round consists of SubBytes, ShiftRows and AddRoundKey

b) The solution is: (5P)
tmp← W3 = (69 74 6F 2A)16
RotByte(tmp) = (74 6F 2A 69)16
SubBytes(RotByte(tmp)) = (92 A8 E5 F9)16
Rcon(1) = (01 00 00 00)
tmp← SubBytes(RotByte(tmp))⊕Rcon( i

4) = (93 A8 E5 F9)16
W4 ← W3 ⊕ tmp = (69 20 E2 99)⊕ tmp = (FA 88 07 60)16

c) The keys K, . . . , K16 are all the same (all 1ss). Decryption is accomplished by reversing
the order of the keys to K16, . . . , K1 . Since the Ki are all the same, this is the same as
encryption, so encrypting twice gives back the plaintext. (2P)

d) The key of all 0s, by the same reasoning as before. (2P)

e) No, this problem does not persist due to the key expansion algorithm, since the key
expansion makes the rounds no longer corresponding one-to-one with other lengths
bit-keys. (3P)





Problem 4. (15 points)

a) We have α = (5n+ 7) and β = (3n+ 4) (3P)

The Bezout lemma states that iff a and b are coprime then the following equation has
integer solutions:

α · x+ β · y = 1

Therefore,
(5n+ 7) · x+ (3n+ 4) · y = 1

Now, we apply the EEA to the previous equation:

(5n+ 7) = (3n+ 4) + (2n+ 3)
(3n+ 4) = (2n+ 3) + (n+ 1)
(2n+ 3) = 2(n+ 1) + 1

Now backwards:

1 = (2n+ 3)− 2(n+ 1)
= (2n+ 3)− 2(−(2n+ 3) + (3n+ 4))
= 3(2n+ 3)− 2(3n+ 4)
= (2n+ 3) + 2(2n+ 3)− 2(3n+ 4)
= 3(2n+ 3)− 2(3n+ 4)
= 3((5n+ 7)− (3n+ 4))− 2(3n+ 4)
= 3(5n+ 7)− 3(3n+ 4)− 2(3n+ 4)
= 3(5n+ 7)− 5(3n+ 4)

Therefore, x = 3 and y = −5 which prove that α and β are relatively prime

b) The steps to generate the first prime p are the following: (3P)

• Using a random number generator, we generate a random number of size K/2
• Set the lowest bit of the generated integer to ensure that the number will be odd
• Set the two highest bits of the integer to ensure that the highest bits of n will be

set
• Using the MRPT, we check if the resulting integer is prime. If not, we increment

the value by 2 and check again

The entire procedure is analogous for q.



c) The given RSA cryptosystem has the following parameters: (3P)

p = 11, q = 13, e = 7 and n = p · q = 143

Using the Euler function: φ(n) = 10 · 12 = 120

Having the expression: m = cd mod n, we need to calculate the gdc(e, φ(n)) = 1

120 = 17 · 7 + 1
7 = 1 · 6 + 1

Now backwards

1 = 7− (1 · 6)
= 7− 6(120− 17 · 7)
= 7− (6 · 120) + 102 · 7
= 103 · 7− 6 · 120 −→ d = 103

m ≡ cd mod n ≡ 31103 mod 143. Therefore, applying the SM algorithm we obtain
m = 47

d) Since gcd(eA, eB) = 1, there exist integers x and y with eA · x + eB · y. Therefore,
m = m1 = meA·x+eB ·y = (meA)x · (meB )y ≡ cA

x · cB
y. Since Claire has access to the

values cA and cB she can calculate m. (2P)

e) The requirements of a digital signature are: (2P)

• it must be verifiable
• it must be forgery-proof
• it must be firmly connected to the document

f) Oskar wants to obtain a chosen signature s = md mod n (2P)

• Oskar generates a message m2 = m ·m−1 mod n and asks again to sign a message
m2, obtaining s2 = m2

d mod n
• From the pairs (m1, s1) and (m2, s2) the wanted signature s on message m can be

recovered as s = s1 · s2 mod n

Proof :

s ≡ s1 · s2 ≡ m1
d ·m2

d ≡ m1
d · (m ·m−1)d ≡

≡ m1
d ·md ≡ mdmodn










