Univ.-Prof. Dr. rer. nat. Rudolf Mathar

1	2	3	4	\sum
$\boxed{15}$	$\boxed{15}$	$\boxed{15}$	$\boxed{15}$	$\boxed{60}$

Written examination

Cryptography
Tuesday, August 23, 2016, 08:30 a.m.

Name: \qquad Matr.-No.: \qquad
Field of study: \qquad

Please pay attention to the following:

1) The exam consists of 4 problems. Please check the completeness of your copy. Only written solutions on these sheets will be considered. Removing the staples is not allowed.
2) The exam is passed with at least $\mathbf{3 0}$ points.
3) You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
5) The results will be published on Tuesday, the $30.08 .16,16: 00 \mathrm{~h}$, on the homepage of the institute.

The corrected exams can be inspected on Tuesday, 02.09.16, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

Problem 1. (15 points)
a) Using Euler's criterion, -1 is a quadratic residue iff $(-1)^{\frac{p-1}{2}}=1$, which means $\frac{p-1}{2}=2 k$ or $p=4 k+1$. (3P)
b) From Wilson's theorem, it is known that: (3P Bonus)

$$
(p-1)!\equiv-1 \quad \bmod p
$$

On the other hand see that:

$$
\begin{array}{rlr}
\frac{p-1}{2} & \equiv-\frac{p+1}{2} & \bmod p \\
\frac{p-3}{2} & \equiv-\frac{p+3}{2} & \bmod p \\
\cdots \cdots & & \\
& \equiv-(p-1) & \bmod p .
\end{array}
$$

Therefore:

$$
(p-1)!\equiv(-1)^{\frac{p-1}{2}}\left(\left(\frac{p-1}{2}\right)!\right)^{2} \quad \bmod p
$$

If $4 \mid p-1$, then the previous equia implies that:

$$
-1 \equiv\left(\left(\frac{p-1}{2}\right)!\right)^{2} \quad \bmod p
$$

c) Use chinese remainder theorem for two solutions $\left(\frac{p-1}{2}\right)$! and ($\left.\frac{q-1}{2}\right)$!. (5P)
d) One way is to find a from $a^{2} \equiv-1 \bmod n$ and then finding c / a. (3P) An easier way for decryption is simply by $-c^{2} \bmod n$. It requires that n be known at the decoder. (1P) Bonus
e) Since $n \mid a^{2}+1$, one can look at prime decomposition of $a^{2}+1$ to find possible $n=p q$. The attack is difficult since the decomposition is difficult. Moreover there might be multiple possibilities for n. (4P)

Problem 2. (15 points)
a) $(3 \mathrm{P})$

$$
\begin{aligned}
H(\hat{C} \mid \hat{M}=M) & =-\sum_{C \in \mathcal{C}} P(\hat{C}=C \mid \hat{M}=M) \log P(\hat{C}=C \mid \hat{M}=M) \\
& =-(1-\epsilon) \log (1-\epsilon)-\epsilon \log \left(\frac{\epsilon}{|\mathcal{K}|-1}\right) .
\end{aligned}
$$

This is independent of $P(\hat{M}=M)$, therefore:

$$
H(\hat{C} \mid \hat{M})=\sum_{M \in \mathcal{M}} P(\hat{M}=M) H(\hat{C} \mid \hat{M}=M)=-(1-\epsilon) \log (1-\epsilon)-\epsilon \log \left(\frac{\epsilon}{|\mathcal{K}|-1}\right) .
$$

b) Using conditioning on \hat{M} : (4P)
$P(\hat{C}=C)=\sum P(\hat{M}=M) P(\hat{C}=C \mid \hat{M}=M)=(1-\epsilon) P(\hat{M}=C)+\frac{\epsilon}{|\mathcal{K}|-1} P(\hat{M} \neq C)$.
Now see that $H(\hat{M})-H(\hat{M} \mid \hat{C})=H(\hat{C})-H(\hat{C} \mid \hat{M})$.
If \hat{M} is uniformly distributed, then:

$$
P(\hat{C}=C)=(1-\epsilon) \frac{1}{|\mathcal{M}|}+\frac{\epsilon}{|\mathcal{K}|-1} \frac{|\mathcal{M}|-1}{|\mathcal{M}|} .
$$

Since $|\mathcal{M}|=|\mathcal{K}|, \hat{C}$ is uniformly distributed and :

$$
H(\hat{C})=\log |\mathcal{K}| .
$$

Therefore:

$$
\begin{aligned}
H(\hat{M})-H(\hat{M} \mid \hat{C}) & =\log |\mathcal{K}|+(1-\epsilon) \log (1-\epsilon)+\epsilon \log \left(\frac{\epsilon}{|\mathcal{K}|-1}\right) \\
& =\log |\mathcal{K}|-\epsilon \log (|\mathcal{K}|-1)+(1-\epsilon) \log (1-\epsilon)+\epsilon \log (\epsilon) \\
& =\log |\mathcal{K}|-\epsilon \log (|\mathcal{K}|-1)-h_{b}(\epsilon),
\end{aligned}
$$

where $h_{b}(\epsilon)=-(1-\epsilon) \log (1-\epsilon)-\epsilon \log (\epsilon)$ is the entropy of a Bernoulli RV with parameter ϵ.
c) $\log |\mathcal{K}|-\epsilon \log (|\mathcal{K}|-1)=(1-\epsilon) \log |\mathcal{K}|+\epsilon \log \left(\frac{|\mathcal{K}|}{|\mathcal{K}|-1}\right)$. When $|\mathcal{K}|$ is large $\log \left(\frac{|\mathcal{K}|}{|\mathcal{K}|-1}\right)$ is small and the dominant term is $(1-\epsilon) \log |\mathcal{K}|$.
d) When $\epsilon=0$, then $H(\hat{M})-H(\hat{M} \mid \hat{C})=H(\hat{M})$, because we have an identity mapping. When $\epsilon=1$, we have: (3P)

$$
H(\hat{M})-H(\hat{M} \mid \hat{C})=\log \left(\frac{|\mathcal{K}|}{|\mathcal{K}|-1}\right)
$$

As $|\mathcal{K}|$ grows large, $\log \left(\frac{|\mathcal{K}|}{|\mathcal{K}|-1}\right)$ tends to zero and the system approaches the perfect secrecy.
e) The perfect secrecy is achieved when $P(\hat{C}=C \mid \hat{M}=M)$ does not depend on M and C. Hence: (2P)

$$
1-\epsilon=\frac{\epsilon}{|\mathcal{K}|-1} \Longrightarrow \epsilon=\frac{|\mathcal{K}|-1}{|\mathcal{K}|} .
$$

Problem 3. (15 points)
a) The steps for the AES128 encryption are: (3P)

- Having a key size of 128 bits \longrightarrow we have $r=10$ rounds
- The steps for the rounds $1, \ldots, r-1$ consist on the following:
- SubBytes (SB)
- ShiftRows (SR)
- MixColums (MC)
- AddRoundKey (ARC)
- The last round consists of SubBytes, ShiftRows and AddRoundKey
b) The solution is: (5P)
$t m p \leftarrow W_{3}=(69746 F 2 A)_{16}$
RotByte $($ tmp $)=(746 F 2 A 69)_{16}$
SubBytes $($ RotByte $($ tmp $))=(92 \text { A8 E5 F9 })_{16}$
Rcon(1) $=(01000000)$
$t m p \leftarrow \operatorname{SubBytes}($ RotByte $(t m p)) \oplus R \operatorname{con}\left(\frac{i}{4}\right)=(93 \text { A8 E5 F9 })_{16}$
$W_{4} \leftarrow W_{3} \oplus t m p=(6920 E 299) \oplus t m p=(F A 880760)_{16}$
c) The keys K, \ldots, K_{16} are all the same (all 1ss). Decryption is accomplished by reversing the order of the keys to K_{16}, \ldots, K_{1}. Since the K_{i} are all the same, this is the same as encryption, so encrypting twice gives back the plaintext. (2P)
d) The key of all 0 s , by the same reasoning as before. (2 P)
e) No, this problem does not persist due to the key expansion algorithm, since the key expansion makes the rounds no longer corresponding one-to-one with other lengths bit-keys. (3P)

Problem 4. (15 points)
a) We have $\alpha=(5 n+7)$ and $\beta=(3 n+4)(3 \mathrm{P})$

The Bezout lemma states that iff a and b are coprime then the following equation has integer solutions:

$$
\alpha \cdot x+\beta \cdot y=1
$$

Therefore,

$$
(5 n+7) \cdot x+(3 n+4) \cdot y=1
$$

Now, we apply the EEA to the previous equation:

$$
\begin{aligned}
& (5 n+7)=(3 n+4)+(2 n+3) \\
& (3 n+4)=(2 n+3)+(n+1) \\
& (2 n+3)=2(n+1)+1
\end{aligned}
$$

Now backwards:

$$
\begin{aligned}
1 & =(2 n+3)-2(n+1) \\
& =(2 n+3)-2(-(2 n+3)+(3 n+4)) \\
& =3(2 n+3)-2(3 n+4) \\
& =(2 n+3)+2(2 n+3)-2(3 n+4) \\
& =3(2 n+3)-2(3 n+4) \\
& =3((5 n+7)-(3 n+4))-2(3 n+4) \\
& =3(5 n+7)-3(3 n+4)-2(3 n+4) \\
& =3(5 n+7)-5(3 n+4)
\end{aligned}
$$

Therefore, $x=3$ and $y=-5$ which prove that α and β are relatively prime
b) The steps to generate the first prime p are the following: (3P)

- Using a random number generator, we generate a random number of size $K / 2$
- Set the lowest bit of the generated integer to ensure that the number will be odd
- Set the two highest bits of the integer to ensure that the highest bits of n will be set
- Using the MRPT, we check if the resulting integer is prime. If not, we increment the value by 2 and check again

The entire procedure is analogous for q.
c) The given RSA cryptosystem has the following parameters: (3P)
$p=11, q=13, e=7$ and $n=p \cdot q=143$

Using the Euler function: $\phi(n)=10 \cdot 12=120$

Having the expression: $m=c^{d} \bmod n$, we need to calculate the $g d c(e, \phi(n))=1$

$$
\begin{aligned}
120 & =17 \cdot 7+1 \\
7 & =1 \cdot 6+1
\end{aligned}
$$

Now backwards

$$
\begin{aligned}
1 & =7-(1 \cdot 6) \\
& =7-6(120-17 \cdot 7) \\
& =7-(6 \cdot 120)+102 \cdot 7 \\
& =103 \cdot 7-6 \cdot 120 \longrightarrow d=103
\end{aligned}
$$

$m \equiv c^{d} \bmod n \equiv 31^{103} \bmod 143$. Therefore, applying the SM algorithm we obtain $m=47$
d) Since $\operatorname{gcd}\left(e_{A}, e_{B}\right)=1$, there exist integers x and y with $e_{A} \cdot x+e_{B} \cdot y$. Therefore, $m=m^{1}=m^{e_{A} \cdot x+e_{B} \cdot y}=\left(m^{e_{A}}\right)^{x} \cdot\left(m^{e_{B}}\right)^{y} \equiv c_{A}^{x} \cdot c_{B}^{y}$. Since Claire has access to the values c_{A} and c_{B} she can calculate m. (2P)
e) The requirements of a digital signature are: (2P)

- it must be verifiable
- it must be forgery-proof
- it must be firmly connected to the document
f) Oskar wants to obtain a chosen signature $s=m^{d} \bmod n(2 \mathbf{P})$
- Oskar generates a message $m_{2}=m \cdot m^{-1} \bmod n$ and asks again to sign a message m_{2}, obtaining $s_{2}=m_{2}{ }^{d} \bmod n$
- From the pairs $\left(m_{1}, s_{1}\right)$ and $\left(m_{2}, s_{2}\right)$ the wanted signature s on message m can be recovered as $s=s_{1} \cdot s_{2} \bmod n$

Proof :

$$
\begin{aligned}
s & \equiv s_{1} \cdot s_{2} \equiv m_{1}{ }^{d} \cdot m_{2}^{d} \equiv m_{1}^{d} \cdot\left(m \cdot m^{-1}\right)^{d} \equiv \\
& \equiv m_{1}{ }^{d} \cdot m^{d} \equiv m^{d} \bmod n
\end{aligned}
$$

