

Univ.-Prof. Dr. rer. nat. Rudolf Mathar

Written examination

Cryptography

Tuesday, August 23, 2016, $08{:}30~{\rm a.m.}$

Name: _

_____ Matr.-No.: __

Field of study: ____

Please pay attention to the following:

- 1) The exam consists of **4 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least **30 points**.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Tuesday, the 30.08.16, 16:00h, on the homepage of the institute.

The corrected exams can be inspected on Tuesday, 02.09.16, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

(Signature)

Problem 1. (15 points)

- a) Using Euler's criterion, -1 is a quadratic residue iff $(-1)^{\frac{p-1}{2}} = 1$, which means $\frac{p-1}{2} = 2k$ or p = 4k + 1. (3P)
- b) From Wilson's theorem, it is known that: (3P Bonus)

$$(p-1)! \equiv -1 \mod p.$$

On the other hand see that:

$$\frac{p-1}{2} \equiv -\frac{p+1}{2} \mod p$$
$$\frac{p-3}{2} \equiv -\frac{p+3}{2} \mod p$$
$$\dots$$
$$1 \equiv -(p-1) \mod p.$$

Therefore:

$$(p-1)! \equiv (-1)^{\frac{p-1}{2}} \left(\left(\frac{p-1}{2} \right)! \right)^2 \mod p$$

If 4|p-1, then the previous equia implies that :

$$-1 \equiv \left(\left(\frac{p-1}{2}\right)!\right)^2 \mod p.$$

c) Use chinese remainder theorem for two solutions $\left(\frac{p-1}{2}\right)!$ and $\left(\frac{q-1}{2}\right)!$. (5P)

- d) One way is to find a from $a^2 \equiv -1 \mod n$ and then finding c/a. (3P) An easier way for decryption is simply by $-c^2 \mod n$. It requires that n be known at the decoder. (1P) Bonus
- e) Since $n|a^2 + 1$, one can look at prime decomposition of $a^2 + 1$ to find possible n = pq. The attack is difficult since the decomposition is difficult. Moreover there might be multiple possibilities for n. (4P)

Problem 2. (15 points)

a) (3P)

$$\begin{split} H(\hat{C}|\hat{M} = M) &= -\sum_{C \in \mathcal{C}} P(\hat{C} = C|\hat{M} = M) \log P(\hat{C} = C|\hat{M} = M) \\ &= -(1-\epsilon) \log(1-\epsilon) - \epsilon \log(\frac{\epsilon}{|\mathcal{K}|-1}). \end{split}$$

This is independent of $P(\hat{M} = M)$, therefore:

$$H(\hat{C}|\hat{M}) = \sum_{M \in \mathcal{M}} P(\hat{M} = M) H(\hat{C}|\hat{M} = M) = -(1-\epsilon)\log(1-\epsilon) - \epsilon\log(\frac{\epsilon}{|\mathcal{K}|-1}).$$

b) Using conditioning on \hat{M} : (4P)

$$P(\hat{C} = C) = \sum P(\hat{M} = M)P(\hat{C} = C|\hat{M} = M) = (1-\epsilon)P(\hat{M} = C) + \frac{\epsilon}{|\mathcal{K}| - 1}P(\hat{M} \neq C).$$

Now see that $H(\hat{M}) - H(\hat{M}|\hat{C}) = H(\hat{C}) - H(\hat{C}|\hat{M})$. If \hat{M} is uniformly distributed, then:

$$P(\hat{C} = C) = (1 - \epsilon)\frac{1}{|\mathcal{M}|} + \frac{\epsilon}{|\mathcal{K}| - 1}\frac{|\mathcal{M}| - 1}{|\mathcal{M}|}$$

Since $|\mathcal{M}| = |\mathcal{K}|$, \hat{C} is uniformly distributed and :

$$H(\hat{C}) = \log |\mathcal{K}|.$$

Therefore:

$$H(\hat{M}) - H(\hat{M}|\hat{C}) = \log |\mathcal{K}| + (1-\epsilon)\log(1-\epsilon) + \epsilon \log(\frac{\epsilon}{|\mathcal{K}|-1})$$

= $\log |\mathcal{K}| - \epsilon \log(|\mathcal{K}|-1) + (1-\epsilon)\log(1-\epsilon) + \epsilon \log(\epsilon)$
= $\log |\mathcal{K}| - \epsilon \log(|\mathcal{K}|-1) - h_b(\epsilon),$

where $h_b(\epsilon) = -(1-\epsilon)\log(1-\epsilon) - \epsilon\log(\epsilon)$ is the entropy of a Bernoulli RV with parameter ϵ .

- c) $\log |\mathcal{K}| \epsilon \log(|\mathcal{K}| 1) = (1 \epsilon) \log |\mathcal{K}| + \epsilon \log(\frac{|\mathcal{K}|}{|\mathcal{K}| 1})$. When $|\mathcal{K}|$ is large $\log(\frac{|\mathcal{K}|}{|\mathcal{K}| 1})$ is small and the dominant term is $(1 \epsilon) \log |\mathcal{K}|$. (3P)
- d) When $\epsilon = 0$, then $H(\hat{M}) H(\hat{M}|\hat{C}) = H(\hat{M})$, because we have an identity mapping. When $\epsilon = 1$, we have: (3P)

$$H(\hat{M}) - H(\hat{M}|\hat{C}) = \log(\frac{|\mathcal{K}|}{|\mathcal{K}| - 1}).$$

As $|\mathcal{K}|$ grows large, $\log(\frac{|\mathcal{K}|}{|\mathcal{K}|-1})$ tends to zero and the system approaches the perfect secrecy.

e) The perfect secrecy is achieved when $P(\hat{C} = C | \hat{M} = M)$ does not depend on M and C. Hence: (2P)

$$1 - \epsilon = \frac{\epsilon}{|\mathcal{K}| - 1} \implies \epsilon = \frac{|\mathcal{K}| - 1}{|\mathcal{K}|}.$$

- a) The steps for the AES128 encryption are: (3P)
 - Having a key size of 128 bits \longrightarrow we have r = 10 rounds
 - The steps for the rounds $1, \ldots, r-1$ consist on the following:
 - SubBytes (SB)
 - ShiftRows (SR)
 - MixColums (MC)
 - AddRoundKey (ARC)
 - The last round consists of SubBytes, ShiftRows and AddRoundKey

b) The solution is: (5P)

 $tmp \leftarrow W_{3} = (69\ 74\ 6F\ 2A)_{16}$ $RotByte(tmp) = (74\ 6F\ 2A\ 69)_{16}$ $SubBytes(RotByte(tmp)) = (92\ A8\ E5\ F9)_{16}$ $Rcon(1) = (01\ 00\ 00\ 00)$ $tmp \leftarrow SubBytes(RotByte(tmp)) \oplus Rcon(\frac{i}{4}) = (93\ A8\ E5\ F9)_{16}$ $W_{4} \leftarrow W_{3} \oplus tmp = (69\ 20\ E2\ 99) \oplus tmp = (FA\ 88\ 07\ 60)_{16}$

- c) The keys K_{1}, \ldots, K_{16} are all the same (all 1ss). Decryption is accomplished by reversing the order of the keys to K_{16}, \ldots, K_1 . Since the K_i are all the same, this is the same as encryption, so encrypting twice gives back the plaintext. (2P)
- d) The key of all 0s, by the same reasoning as before. (2P)
- e) No, this problem does not persist due to the key expansion algorithm, since the key expansion makes the rounds no longer corresponding one-to-one with other lengths bit-keys. (3P)

Problem 4. (15 points)

a) We have $\alpha = (5n + 7)$ and $\beta = (3n + 4)$ (3P)

The Bezout lemma states that iff a and b are coprime then the following equation has integer solutions:

$$\alpha \cdot x + \beta \cdot y = 1$$

Therefore,

$$(5n+7) \cdot x + (3n+4) \cdot y = 1$$

Now, we apply the EEA to the previous equation:

$$(5n + 7) = (3n + 4) + (2n + 3)$$

$$(3n + 4) = (2n + 3) + (n + 1)$$

$$(2n + 3) = 2(n + 1) + 1$$

Now backwards:

$$1 = (2n + 3) - 2(n + 1)$$

= (2n + 3) - 2(-(2n + 3) + (3n + 4))
= 3(2n + 3) - 2(3n + 4)
= (2n + 3) + 2(2n + 3) - 2(3n + 4)
= 3(2n + 3) - 2(3n + 4)
= 3((5n + 7) - (3n + 4)) - 2(3n + 4)
= 3(5n + 7) - 3(3n + 4) - 2(3n + 4)
= 3(5n + 7) - 5(3n + 4)

Therefore, x = 3 and y = -5 which prove that α and β are relatively prime

b) The steps to generate the first prime p are the following: (3P)

- Using a random number generator, we generate a random number of size K/2
- Set the lowest bit of the generated integer to ensure that the number will be odd
- Set the two highest bits of the integer to ensure that the highest bits of n will be set
- Using the MRPT, we check if the resulting integer is prime. If not, we increment the value by 2 and check again

The entire procedure is analogous for q.

c) The given RSA cryptosystem has the following parameters: (3P)

p = 11, q = 13, e = 7 and $n = p \cdot q = 143$

Using the Euler function: $\phi(n) = 10 \cdot 12 = 120$

Having the expression: $m = c^d \mod n$, we need to calculate the $gdc(e, \phi(n)) = 1$

$$120 = 17 \cdot 7 + 1$$
$$7 = 1 \cdot 6 + 1$$

Now backwards

$$1 = 7 - (1 \cdot 6)$$

= 7 - 6(120 - 17 \cdot 7)
= 7 - (6 \cdot 120) + 102 \cdot 7
= 103 \cdot 7 - 6 \cdot 120 \logstarrow d = 103

 $m \equiv c^d \mod n \equiv 31^{103} \mod 143.$ Therefore, applying the SM algorithm we obtain m = 47

- d) Since $gcd(e_A, e_B) = 1$, there exist integers x and y with $e_A \cdot x + e_B \cdot y$. Therefore, $m = m^1 = m^{e_A \cdot x + e_B \cdot y} = (m^{e_A})^x \cdot (m^{e_B})^y \equiv c_A^x \cdot c_B^y$. Since Claire has access to the values c_A and c_B she can calculate m. (2P)
- e) The requirements of a digital signature are: (2P)
 - it must be verifiable
 - it must be forgery-proof
 - it must be firmly connected to the document

f) Oskar wants to obtain a chosen signature $s = m^d \mod n$ (2P)

- Oskar generates a message $m_2 = m \cdot m^{-1} \mod n$ and asks again to sign a message m_2 , obtaining $s_2 = m_2^d \mod n$
- From the pairs (m_1, s_1) and (m_2, s_2) the wanted signature s on message m can be recovered as $s = s_1 \cdot s_2 \mod n$

Proof :

$$s \equiv s_1 \cdot s_2 \equiv m_1^{\ d} \cdot m_2^{\ d} \equiv m_1^{\ d} \cdot (m \cdot m^{-1})^{\ d} \equiv m_1^{\ d} \cdot m^d \equiv m^d \mod n$$