Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 2
 - Proposed Solution -

Friday, April 26, 2019

Solution of Problem 1

a) Claim:

$$
c_{l}=m \prod_{i=1}^{l} a_{i}+\sum_{i=1}^{l} b_{i}\left(\prod_{j=i+1}^{l} a_{j}\right) \quad \bmod q \quad \forall l \in \mathbb{N}
$$

Proof by induction.
Basic step

$$
c_{1}=a_{1} m+b_{1} \quad \bmod q=m \prod_{i=1}^{1} a_{i}+\sum_{i=1}^{1} b_{i}\left(\prod_{j=i+1}^{1} a_{j}\right) \quad \bmod q
$$

Inductive step $l \rightarrow l+1$

$$
\begin{aligned}
c_{l+1} & \equiv a_{l+1} c_{l}+b_{l+1} \equiv a_{l+1}\left(m \prod_{i=1}^{l} a_{i}+\sum_{i=1}^{l} b_{i}\left(\prod_{j=i+1}^{l} a_{j}\right)\right)+b_{l+1} \\
& \equiv m \prod_{i=1}^{l+1} a_{i}+\sum_{i=1}^{l+1} b_{i}\left(\prod_{j=i+1}^{l+1} a_{j}\right)(\bmod q)
\end{aligned}
$$

Obviously, it holds $c=c_{n}$.
b) We obtain an effective key:

$$
k=\left(a=\prod_{i=1}^{n} a_{i} \quad \bmod q, b=\sum_{i=1}^{n} b_{i}\left(\prod_{j=i+1}^{n} a_{j}\right) \quad \bmod q\right)
$$

Therefore, successively encrypting with two different affine functions is the same as encrypting with only one effective key $k=(a, b)$.

Solution of Problem 2

a) The explicit encryption function is given as:

$$
\begin{aligned}
c_{i k+1} & =m_{i k+1}+m_{i k+2}+m_{i k+3} \\
c_{i k+2} & =m_{i k+1}+m_{i k+2} \\
c_{i k+3} & =m_{i k+1}+m_{i k+3}
\end{aligned}
$$

b) To derive the encryption function, calculate the inverse of matrix A (in \mathbb{F}_{2}). You may first make sure that A^{-1} exists.
$\operatorname{det} A=1 \cdot 1 \cdot 1+1 \cdot 0 \cdot 1+1 \cdot 1 \cdot 0-1 \cdot 1 \cdot 1-1 \cdot 1 \cdot 1-1 \cdot 0 \cdot 0=-1=1 \neq 0$

$0 \begin{array}{lllll}0 & 1 & 1 & 0\end{array}$

1	0	0		1	1
1					
0	1	0		1	0
	1				
0	0	1		1	1

The explicit decryption function becomes:

$$
\begin{aligned}
& m_{i k+1}=c_{i k+1}+c_{i k+2}+c_{i k+3} \\
& m_{i k+2}=c_{i k+1}+c_{i k+3} \\
& m_{i k+3}=c_{i k+1}+c_{i k+2}
\end{aligned}
$$

Solution of Problem 3

a) Substitution cipher: Keys are permutations over the symbol alphabet $\Sigma=\left\{x_{0}, \ldots, x_{l-1}\right\}$. \Rightarrow As known from combinatorics, there are l ! permutations, i.e., l! possible keys.
b) Affine cipher with key (b, a) and with symbols in alphabet \mathbb{Z}_{26} :

$$
\begin{aligned}
c_{i} & =\left(a \cdot m_{i}+b\right) \bmod 26 \\
m_{i} & =a^{-1} \cdot\left(c_{i}-b\right) \bmod 26
\end{aligned}
$$

For a valid decryption a^{-1} must exist. a^{-1} exists if $\operatorname{gcd}(a, 26)=1$ holds $\Rightarrow a \in \mathbb{Z}_{26}^{*} .26$ has only 2 dividers as $26=13 \cdot 2$ is its prime factorization.

$$
\mathbb{Z}_{26}^{*}=\left\{a \in \mathbb{Z}_{26} \mid \operatorname{gcd}(a, 26)=1\right\}=\{1,3,5,7,9,11,15,17,19,21,23,25\} \subset \mathbb{Z}_{26}
$$

$\Rightarrow\left|\mathbb{Z}_{26}^{*}\right|=12$ possible keys for a.
There is no restriction on $b \in \mathbb{Z}_{26}$, i.e., $\left|\mathbb{Z}_{26}\right|=26$ possible keys for b.
Altogether, we have $\left|\mathbb{Z}_{26} \times \mathbb{Z}_{26}^{*}\right|=\left|\mathbb{Z}_{26}\right| \cdot\left|\mathbb{Z}_{26}^{*}\right|=26 \cdot 12=312$ possible keys (a, b).
c) Permutation cipher with block length $L \Rightarrow L$! permutations $\Rightarrow L$! possible keys.

