Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 3
 - Proposed Solution -

Friday, May 3, 2019

Solution of Problem 1

a) We have the autokey cryptosystem:

$$
c_{i}=\left\{\begin{array}{lll}
m_{i}+k_{i} & \bmod 26 & 0 \leq i \leq n-1 \\
m_{i}+c_{i-n} & \bmod 26 & n \leq i \leq l-1
\end{array}\right.
$$

Using a ciphertext only attack, we can compute the message as follows:

$$
\begin{gathered}
c_{n}=m_{n}+c_{0} \quad \bmod 26 \Longleftrightarrow m_{n}=c_{n}-c_{0} \quad \bmod 26 \\
c_{n+1}=m_{n+1}+c_{1} \bmod 26 \Longleftrightarrow m_{n+1}=c_{n+1}-c_{1} \bmod 26 \\
\Longrightarrow m_{n+j}=c_{n+j}-c_{j} \bmod 26
\end{gathered}
$$

Now determine n by trying $n=1,2, \ldots$ until the ciphertext starting at position n sounds reasonable. You still need to guess the first part of the message.
b) Using the result from above we decipher the following text, just shifting the ciphertext along itself:

For $n=1$

c_{k}	D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A	
c_{k-n}		D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A
m_{k}		I	V	P													

For $n=2$

c_{k}	D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A		
c_{k-n}			D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A
m_{k}			D	K	N													

For $n=3$

c_{k}	D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A			
c_{k-n}				D	L	G	V	T	Y	O	A	C	O	U	V	C	E	Z	A
m_{k}				S	I	S	T	H	E	A	U	T	O	K	E	Y			

Only the first characters are missing in the message. For these characters, we guess them. Message: THIS IS THE AUTOKEY

Now we also may calculate the key by calculating "DLG"-"THI"="KEY".
c) Consider:

$$
\hat{c}_{i}= \begin{cases}m_{i}+k_{i} \quad \bmod 26 & 0 \leq i \leq n-1 \\ m_{i}+m_{i-n} \bmod 26 & n \leq i \leq l-1\end{cases}
$$

In this case, we know the keylength n, and we know that the message \mathbf{m} is used to generate \hat{c}_{i}. Therefore, we can obtain the message by frequency analysis on:

$$
\begin{equation*}
\hat{c}_{i}=m_{i}+m_{i-n} . \tag{1}
\end{equation*}
$$

With a Friedmann attack, using the most common characters in the English language, we derive the most common \hat{c}_{i} 's. The message can be deciphered with a high probability then. Here, we can say ' I ' is the most probable letter, if combining two english letters. Moreover, 'E'+'E'='I' is the most likely combination for getting the letter $\hat{c}_{i}=$ 'I'. Hence, we have a look at a positions $k \geq n$ in the cryptogram with $c_{k}=$ 'I' and now know that $m_{k}=m_{k-n}=$ 'E' holds true with high probability. Moreover, we know

$$
\begin{aligned}
m_{k-(j+1) n} & =\hat{c}_{k-j n}-m_{k-j n} \quad \bmod 26 \forall j \in \mathbb{N} \text { with } k-j n \geq n, \\
m_{k+j n} & =\hat{c}_{k+j n}-m_{k+(j-1) n} \quad \bmod 26 \forall j \in \mathbb{N} \text { with } k+j n<l .
\end{aligned}
$$

d) In our case there are two positions with 'I'. The first occurence is used as described above to get two times 'E' and aftewards calculating each 2nd (n-th) letter of the message. The second occurence reveals the remaining text.

Q	E	X	Y	I	R	V	E	S	I	U	X	X	K	Q	V	F	L	H	K	G
T		E		\mathbf{E}		R		B		T		E		M		T		O		S
	H		R		A		\mathbf{E}		\mathbf{E}		T		R		E		H		D	

The plaintext is: THERE ARE BETTER METHODS

The key can be calculated by 'QE'-'TH'='XX'.

Solution of Problem 2

In this exercise, we have to apply the Kasiski-Babbage method as follows:

$$
Y_{i j}= \begin{cases}1 & \text { if } c_{i}=c_{j} \\ 0 & \text { else }\end{cases}
$$

then

$$
\mathrm{E}\left[Y_{i j}\right]= \begin{cases}\kappa_{m} & \text { if } c_{i}=c_{j} \\ \frac{1}{m} & \text { else }\end{cases}
$$

It follows for $m=26$ (using English language):

$$
\begin{equation*}
k=\frac{0.028433 n}{(n-1) I_{C}-0.0385 n+0.066895} \tag{2}
\end{equation*}
$$

In our case, the length of the message is $n=3568$. The index of coincidence is approximately $I_{C} \approx 0.043037$. Therefore, $k \approx 6.25643$. The length of the key has to be an integer, $k \approx 6$. We use the hint at the beginning of the exercise, getting $k \approx 5$.

Once we have the keylength, we perform a frequency analysis of the ciphertext. We create a frequency analysis for each of the 5 columns of the ciphertext. As we know, the most common characters in English language are: E, T, A, O, I, N.

The frequency analysis in detail is as follows:

Block	Character	Frequency	Char	Frequency	Char	Frequency
$\mathbf{1}$	T	89	I	68	P	61
$\mathbf{2}$	P	103	E	69	T	56
$\mathbf{3}$	Y	94	N	63	C	58
$\mathbf{4}$	X	101	B	59	G	53
$\mathbf{5}$	S	85	H	68	B	58

Once this analysis is finished. We map the most common character to the character E , the second to T and we do the same with the following. Using this method, we obtain the key: Key $=(\mathrm{T} \rightarrow \mathrm{E}, \mathrm{P} \rightarrow \mathrm{E}, \mathrm{Y} \rightarrow \mathrm{E}, \mathrm{X} \rightarrow \mathrm{E}, \mathrm{S} \rightarrow \mathrm{E})=\mathrm{PLUTO}$

Using this key to decipher the ciphertext, the first sentence of the message is: THE BLACK CAT FOR THE MOST WILD YET MOST HOMELY NARRATIVE WHICH I AM ABOUT

