Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 5
 - Proposed Solution -

Friday, May 17, 2019

Solution of Problem 1

a) Let us first take a look at Table 5.1 (Permutation Choice 1). Which bits are used to construct C_{0} and D_{0} from K_{0} ?
C_{0} is constructed from:

- Bits $1,2,3$ of the first 4 bytes, and
- bits $1,2,3,4$ of the last 4 bytes
D_{0} is constructed from:
- Bits $4,5,6,7$ of the first 4 bytes, and
- bits $5,6,7$ of the last 4 bytes

Note that this particular structure is also indicated by the given weak key.
This construction can also be seen in the following table:

When considering C_{0}, read columnwise (bottom to top) and from left to right. Table 5.1 (PC1) has exactly the same sequence, i.e., we have discovered a part of its construction principle. Similar steps are applied to construct D_{0}.
When regarding the bit-sequence of the given round key $K_{0}=0 \times 1$ F1F 1F1F OEOE 0E0E, we now easily see that:

- All bits of C_{0} are 0 , and all bits of D_{0} are 1 .
- For the given C_{0} and D_{0}, cyclic shifting does not change the bits at all. \Rightarrow We obtain $C_{i}=C_{0}$ and $D_{i}=D_{0}$ for all rounds $i=1, \ldots, 16$.
\Rightarrow All round keys are the same: $K_{1}=K_{2}=\ldots=K_{16}$.
- Since decryption in DES is executing the encryption with round keys in reverse order, we observe that encryption acts identically to decryption for given weak key. Thus, a twofold encryption with the weak key, yields the original plaintext:

$$
\operatorname{DES}_{K}\left(\operatorname{DES}_{K}(M)\right)=M \quad \forall M \in \mathcal{M}
$$

b) In order to find further weak keys, we intend to produce $K_{1}=K_{2}=\ldots=K_{16}$. It suffices to generate C_{0} and D_{0} such that they contain only either zeros or ones only. In particular, we choose the bits $K=X X X X Y Y Y Y$ with the first 4 bytes X and the last 4 bytes Y such that:

$$
X=b b b c c c c *, \quad Y=b b b b c c c *, \quad b, c \in\{0,1\} .
$$

with $*$ fulfilling the corresponding parity check condition. Then C_{0} and D_{0} become

$$
C_{0}=b b \ldots b, \quad D_{0}=c c \ldots c
$$

and it holds that

$$
C_{0}=C_{n}, \quad D_{0}=D_{n} \quad \forall 0 \leq n \leq 16,
$$

because C_{n}, D_{n} are created by a cyclic shift of C_{0}, D_{0} respectively.
The 4 weak keys are simply all possible cases of $b, c \in\{0,1\}$ with the proper parity bits:

$$
\begin{array}{lll}
K_{1}=0 \times 0101010101010101, & b=c=0, \quad d=e=1 \\
K_{2}=0 \times 1 \text { F1F 1F1F OE0E 0E0E }, & b=0, \quad c=1, \quad d=1, \quad e=0 \\
K_{3}=0 \times 50 E 0 \text { EOE0 F1F1 F1F1 }, & b=1, \quad c=0, \quad d=0, \quad e=1 \\
K_{4}=0 \times F E F E \text { FEFE FEFE FEFE }, & b=c=1, \quad d=e=0
\end{array}
$$

Solution of Problem 2

$$
\left(\begin{array}{l}
r_{0} \tag{1}\\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \cdot\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4}
$$

It is to show that:

$$
\begin{equation*}
\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \equiv \sum_{i=0}^{3} r_{i} u^{i} \quad\left(\bmod \left(u^{4}+1\right)\right) . \tag{2}
\end{equation*}
$$

We expand the multiplication on the left hand side of (2), reduce it modulo $u^{4}+1 \in \mathbb{F}_{2^{8}}[u]$, and use the abbreviations $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime}$ according to (1).

$$
\begin{aligned}
& \left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \\
= & c_{3}(x+1) u^{6}+c_{3} u^{5}+c_{3} u^{4}+c_{3} x u^{3}+ \\
& c_{2}(x+1) u^{5}+c_{2} u^{4}+c_{2} u^{3}+c_{2} x u^{2}+ \\
& c_{1}(x+1) u^{4}+c_{1} u^{3}+c_{1} u^{2}+c_{1} x u+ \\
& c_{0}(x+1) u^{3}+c_{0} u^{2}+c_{0} u+c_{0} x \\
= & {\left[c_{3}(x+1)\right] u^{6}+\left[c_{3}+c_{2}(x+1)\right] u^{5}+\left[c_{3}+c_{2}+c_{1}(x+1)\right] u^{4} } \\
& +\left[c_{3} x+c_{2}+c_{1}+c_{0}(x+1)\right] u^{3}+\left[c_{2} x+c_{1}+c_{0}\right] u^{2}+\left[c_{1} x+c_{0}\right] u+c_{0} x .
\end{aligned}
$$

Now, we apply the modulo operation and merge terms:

$$
\begin{aligned}
& \equiv {\left[c_{3} x+c_{2}+c_{1}+(x+1) c_{0}\right] u^{3}+\left[c_{3}(x+1)+c_{2} x+c_{1}+c_{0}\right] u^{2}+} \\
& {\left[c_{3}+c_{2}(x+1)+c_{1} x+c_{0}\right] u+\left[c_{3}+c_{2}+c_{1}(x+1)+c_{0} x\right] } \\
& \stackrel{(1)}{=} r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0} \equiv \sum_{i=0}^{3} r_{i} u^{i} \quad\left(\bmod \left(u^{4}+1\right)\right)
\end{aligned}
$$

