Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 6
 - Proposed Solution -

Friday, May 24, 2019

Solution of Problem 1

The given AES-128 key is denoted in hexadecimal representation:

$$
K=(2 D 617269|65007661| 6 E 00436 C \mid 65656666)
$$

(a) The round key is $K_{0}=K=\left(W_{0} W_{1} W_{2} W_{3}\right)$ with $W_{0}=(2 D 617269)$, $W_{1}=$ (650076 61), $W_{2}=(6 E 00436 C), W_{3}=(65656666)$.
(b) To calculate the first 4 bytes of round key K_{1} recall that $K_{1}=\left(W_{4} W_{5} W_{6} W_{7}\right)$.

Follow Alg. 1 as given in the lecture notes to calculate W_{4} :

```
Algorithm 1 AES key expansion (applied)
    for \(i \leftarrow 4 ; i<4 \cdot(r+1) ; i++\) do
        Initialize for-loop with \(i \leftarrow 4\).
        \(\mathrm{tmp} \leftarrow W_{i-1}\)
        \(\mathrm{tmp} \leftarrow W_{3}=(65656666)\)
        if \((i \bmod 4=0)\) then
            result is true as \(i=4\).
            tmp \(\leftarrow \operatorname{SubBytes}(\operatorname{RotByte}(\operatorname{tmp})) \oplus \operatorname{Rcon}(i / 4)\)
            Evaluate this operation step by step:
            RotByte \((\mathrm{tmp})=(65666665)\), i.e., a cyclic left shift of one byte
            To compute SubBytes(65 6666 65) evaluate Table 5.8 for each byte:
            (row 6, col 5) provides \(77_{10}=4 D_{16}\)
            (row 6 , col 6 ) provides \(51_{10}=33_{16}\)
            Note that the indexation of rows and columns starts with zero.
            SubBytes \((65666665)=(4 D 33334 D)\)
            \(i / 4=1\)
            \(\operatorname{Rcon}(1)=(\operatorname{RC}(1) 000000)\), with \(\operatorname{RC}(1)=x^{1-1}=x^{0}=1 \in \mathbb{F}_{2^{8}}\).
            \(\mathrm{tmp} \leftarrow(4 D 33334 D) \oplus(01000000)=(4 C 33334 D)\)
        end if
        \(W_{i} \leftarrow W_{i-4} \oplus \mathrm{tmp} W_{4} \leftarrow W_{0} \oplus \mathrm{tmp}\). Then, next iteration, \(i \leftarrow 5 \ldots\)
    end for
```

W_{0}	2	D	6	1	7	2	6	9
\oplus	tmp	4	C	3	3	3	3	4
D								
W_{0}	0010	1101	0110	0001	0111	0010	0110	1001
$\oplus \mathrm{tmp}$	0100	1100	0011	0011	0011	0011	0100	1101
W_{4}	0110	0001	0101	0010	0100	0001	0010	0100
W_{4}	6	1	5	2	4	1	2	4

Solution of Problem 2

Given: Alphabet \mathcal{A}, blocklength $n \in \mathbb{N}$ and $\mathcal{M}=\mathcal{A}^{n}=\mathcal{C}$.
\mathcal{A}^{n} describes all possible streams of n bits.
a) An encryption is an injective function $e_{K}: \mathcal{M} \rightarrow \mathcal{C}$, with $K \in \mathcal{K}$.

Fix key $K \in \mathcal{K}$. As $e_{K}(\cdot)$ is injective, it holds:

- $\left\{e_{K}(M) \mid M \in \mathcal{M}\right\} \subseteq \mathcal{C}$
- $\left\{e_{K}(M) \mid M \in \mathcal{M}\right\}=\mathcal{M}$
- Since $\mathcal{M}=\mathcal{C} \Rightarrow e_{K}(\mathcal{M})=\mathcal{C}$ also surjective
- $\Rightarrow e(\mathcal{M}, K)$ is a bijective function.

A permutation π is a bijective (one-to-one) function $\pi: \mathcal{X} \rightarrow \mathcal{X}$.
\Rightarrow For each K, the encryption $e_{K}(\cdot)$ is a permutation with $\mathcal{X}=\mathcal{A}^{n}$.
b) With $\mathcal{A}=\{0,1\} \Rightarrow|\mathcal{A}|=|\{0,1\}|=2$, and $n=6$ there are $N=2^{6}=64$ elements. It follows that there are $64!\approx 1.2689 \cdot 10^{89}$ different block ciphers.

Solution of Problem 3

a) The bit error occurs in block $C_{i}, i>0$, with block size BS.

mode	M_{i}	max \#err	remark
ECB	$E_{K}^{-1}\left(C_{i}\right)$	BS	Only block M_{i} is affected
CBC	$E_{K}^{-1}\left(C_{i}\right) \oplus C_{i-1}$	BS+1	M_{i} and one bit in M_{i+1}
OFB	$C_{i} \oplus Z_{i}$	1	One bit in M_{i}, as $Z_{0}=C_{0}, Z_{i}=E_{K}\left(Z_{i-1}\right)$
CFB	$C_{i} \oplus E_{k}\left(C_{i-1}\right)$	BS+1	M_{i+1} and one bit in M_{i}
CTR	$C_{i} \oplus E_{K}\left(Z_{i}\right)$	1	One bit in $M_{i}, Z_{0}=C_{0}, Z_{i}=Z_{i-1}+1$

b) If one bit of the ciphertext is lost or an additional one is inserted in block C_{i} at position j, all bits beginning with the following positions may be corrupt:

mode	block	position
ECB	i	1
CBC	i	1
OFB	i	j
CFB	i	j
CTR	i	j

In ECB and CBC, all bits of all blocks $C_{i+k}, k \in \mathbb{N}_{0}$ may be corrupt.
In OFB, CFB, CTR, all bits beginning at position j of block C_{i} may be corrupt.

