

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 6 - Proposed Solution -Friday, May 24, 2019

Solution of Problem 1

The given AES-128 key is denoted in hexadecimal representation:

 $K = (2D \ 61 \ 72 \ 69 \ | \ 65 \ 00 \ 76 \ 61 \ | \ 6E \ 00 \ 43 \ 6C \ | \ 65 \ 65 \ 66 \ 66)$

- (a) The round key is $K_0 = K = (W_0 \ W_1 \ W_2 \ W_3)$ with $W_0 = (2D \ 61 \ 72 \ 69), \ W_1 = (65 \ 00 \ 76 \ 61), \ W_2 = (6E \ 00 \ 43 \ 6C), \ W_3 = (65 \ 65 \ 66 \ 66).$
- (b) To calculate the first 4 bytes of round key K_1 recall that $K_1 = (W_4 \ W_5 \ W_6 \ W_7)$. Follow Alg. 1 as given in the lecture notes to calculate W_4 :

Algorithm 1 AES key expansion (applied)

for $i \leftarrow 4$; $i < 4 \cdot (r+1)$; i + 4 do Initialize for-loop with $i \leftarrow 4$. $tmp \leftarrow W_{i-1}$ $tmp \leftarrow W_3 = (65\ 65\ 66\ 66)$ if $(i \mod 4 = 0)$ then result is *true* as i = 4. $tmp \leftarrow SubBytes(RotByte(tmp)) \oplus Rcon(i/4)$ Evaluate this operation step by step: $RotByte(tmp) = (65 \ 66 \ 65), i.e., a cyclic left shift of one byte$ To compute SubBytes(65 66 66 65) evaluate Table 5.8 for each byte: (row 6, col 5) provides $77_{10} = 4D_{16}$ (row 6, col 6) provides $51_{10} = 33_{16}$ Note that the indexation of rows and columns starts with zero. $SubBytes(65 \ 66 \ 66 \ 65) = (4D \ 33 \ 33 \ 4D)$ i/4 = 1 $\operatorname{Rcon}(1) = (\operatorname{RC}(1) \ 00 \ 00 \ 00), \text{ with } \operatorname{RC}(1) = x^{1-1} = x^0 = 1 \in \mathbb{F}_{2^8}.$ $tmp \leftarrow (4D \ 33 \ 33 \ 4D) \oplus (01 \ 00 \ 00 \ 00) = (4C \ 33 \ 33 \ 4D)$ end if $W_i \leftarrow W_{i-4} \oplus \operatorname{tmp} W_4 \leftarrow W_0 \oplus \operatorname{tmp.}$ Then, next iteration, $i \leftarrow 5...$ end for

	W_0	2	D	6	1	7	2	6	9
\oplus	W_0 tmp	4	С	3	1 3	3	3	4	D
	W_0	0010 0100	1101	0110	0001	0111	0010	0110	1001
\oplus	tmp	0100	1100	0011	0011	0011	0011	0100	1101
	W_4	0110	0001	0101	0010	0100	0001	0010	0100
	\overline{W}_4	6	1	5	2	4	1	2	4

Solution of Problem 2

Given: Alphabet \mathcal{A} , blocklength $n \in \mathbb{N}$ and $\mathcal{M} = \mathcal{A}^n = \mathcal{C}$. \mathcal{A}^n describes all possible streams of n bits.

- a) An encryption is an injective function $e_K : \mathcal{M} \to \mathcal{C}$, with $K \in \mathcal{K}$. Fix key $K \in \mathcal{K}$. As $e_K(\cdot)$ is injective, it holds:
 - $\{e_K(M) \mid M \in \mathcal{M}\} \subseteq \mathcal{C}$
 - $\{e_K(M) \mid M \in \mathcal{M}\} = \mathcal{M}$
 - Since $\mathcal{M} = \mathcal{C} \Rightarrow e_K(\mathcal{M}) = \mathcal{C}$ also surjective
 - $\Rightarrow e(\mathcal{M}, K)$ is a bijective function.

A permutation π is a bijective (one-to-one) function $\pi : \mathcal{X} \to \mathcal{X}$. \Rightarrow For each K, the encryption $e_K(\cdot)$ is a permutation with $\mathcal{X} = \mathcal{A}^n$.

b) With $\mathcal{A} = \{0, 1\} \Rightarrow |\mathcal{A}| = |\{0, 1\}| = 2$, and n = 6 there are $N = 2^6 = 64$ elements. It follows that there are $64! \approx 1.2689 \cdot 10^{89}$ different block ciphers.

Solution of Problem 3

a) The bit error occurs in block C_i , i > 0, with block size BS.

mode	M_i	$\max \# \mathrm{err}$	remark
ECB	$E_K^{-1}(C_i)$	BS	Only block M_i is affected
CBC	$E_K^{-1}(\overline{C_i}) \oplus \overline{C_{i-1}}$	BS+1	M_i and one bit in M_{i+1}
OFB	$C_i \oplus Z_i$	1	One bit in M_i , as $Z_0 = C_0, Z_i = E_K(Z_{i-1})$
CFB	$C_i \oplus E_k(C_{i-1})$	BS+1	M_{i+1} and one bit in M_i
CTR	$C_i \oplus E_K(Z_i)$	1	One bit in $M_i, Z_0 = C_0, Z_i = Z_{i-1} + 1$

b) If one bit of the ciphertext is lost or an additional one is inserted in block C_i at position j, all bits beginning with the following positions may be corrupt:

mode	block	position
ECB	i	1
CBC	i	1
OFB	i	j
CFB	i	j
CTR	i	j

In ECB and CBC, all bits of all blocks C_{i+k} , $k \in \mathbb{N}_0$ may be corrupt. In OFB, CFB, CTR, all bits beginning at position j of block C_i may be corrupt.