

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 7 - Proposed Solution -Friday, May 31, 2019

Solution of Problem 1

Let $\varphi : \mathbb{N} \to \mathbb{N}$ the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$ with $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.$

a) Let n = p be prime. It follows for the multiplicative group that:

$$\mathbb{Z}_p^* = \{a \in \mathbb{Z}_p \mid \gcd(a, p) = 1\} = \{1, 2, \dots, p-1\} \Rightarrow \varphi(p) = p-1$$

b) The power p^k has only one prime factor. So p^k has a common divisors that are not equal to one: These are only the multiples of p. For $1 \le a \le p^k$:

$$1 \cdot p$$
, $2 \cdot p$, ..., $p^{k-1} \cdot p = p^k$.

And it follows that

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$$

c) Let n = pq for two primes $p \neq q$. It holds for $1 \leq a < pq$

1) $p \mid a \lor q \mid a \Rightarrow \gcd(a, pq) > 1$, and 2) $p \nmid a \land q \nmid a \Rightarrow \gcd(a, pq) = 1$.

$$\begin{array}{l} \text{It follows } \mathbb{Z}_{p\,q}^{*} = \underbrace{\{1 \leq a \leq p\,q-1\}}_{p\,q-1 \text{ elements}} \backslash \left\{ \underbrace{\{1 \leq a \leq p\,q-1 \mid p+a\}}_{q-1 \text{ elements}} \stackrel{.}{\cup} \underbrace{\{1 \leq a \leq p\,q-1 \mid q+a\}}_{p-1 \text{ elements}} \right\} \\ \text{Hence: } \varphi\left(p\,q\right) = (p\,q-1) - (q-1) - (p-1) = p\,q-p-q+1 = (p-1)(q-1) = \varphi(p)\,\varphi(q). \end{array}$$

- d) Apply the Euler phi-function on n with the following steps:
 - 1. Factorize all prime factors of the given n
 - 2. Apply the rules in a) to c), correspondingly.

$$\varphi(4913) = \varphi(17^3) \stackrel{\text{(b)}}{=} 17^2(17 - 1) = 4624, \text{ and}$$

 $\varphi(899) = \varphi(30^2 - 1^2) = \varphi((30 - 1)(30 + 1)) = \varphi(29 \cdot 31) \stackrel{\text{(c)}}{=} 28 \cdot 30 = 840$

Solution of Problem 2

Consider the set $\mathbb{Z}_{mn} = \{1, \ldots, mn\}$. If $x \in \mathbb{Z}_{mn}^*$ then gcd(x, m) = gcd(x, n) = 1. The members of \mathbb{Z}_{mn} can be written as am + b for $a \in \{0, 1, \ldots, n-1\}$ and $b \in \{1, \ldots, m\}$ namely:

For each $b_i \in \mathbb{Z}_m^*$, $am + b_i$ is also relatively prime with respect to m for $a \in \{0, 1, \ldots, n-1\}$. Hence in each row of the table above there are $\varphi(m)$ numbers relatively prime with respect to m. These numbers correspond to the columns $b_i \in \mathbb{Z}_m^*$ of the table above.

Now consider the column $am + b_i$ for $a \in \{0, 1, ..., n-1\}$. Since gcd(m, n) = 1, all $am + b_i$'s are *n* different numbers modulo *n* among which only $\varphi(n)$ are relatively prime with respect to *n*. Therefore you have $\varphi(m)$ columns and in each column $\varphi(n)$ elements that are both relatively prime with respect to *m* and *n*. Therefore there are $\varphi(m)\varphi(n)$ numbers relatively prime to *mn*. Hence,

$$\varphi(mn) = \varphi(m)\varphi(n).$$

Solution of Problem 3

a) Define event A: 'n composite' $\Leftrightarrow \overline{A}$: 'n prime'. Define event B: m-fold MRPT provides 'n prime' in all m cases. From hint: $P(\overline{A}) = \frac{2}{\ln(N)} \Rightarrow P(A) = 1 - \frac{2}{\ln(N)}$ (cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:

$$P(B \mid A) \le \left(\frac{1}{4}\right)^m$$

Probability of the MRPT verifying an actual prime is:

$$P(B \mid A) = 1$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:

$$p = P(A | B)$$

$$= \frac{P(B | A) \cdot P(A)}{P(B)}$$

$$= \frac{P(B | A) \cdot P(A)}{P(B | A) \cdot P(A) + P(B | \overline{A}) \cdot P(\overline{A})}$$

$$\leq \frac{(\frac{1}{4})^{m}(1 - \frac{2}{\ln(N)})}{(\frac{1}{4})^{m}(1 - \frac{2}{\ln(N)}) + 1 \cdot \frac{2}{\ln(N)}}$$

$$= \frac{\ln(N) - 2}{\ln(N) - 2 + 2^{2m+1}}$$

b) Note that the above function $f(x) = \frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}$, a > 0, as its derivative is $f'(x) = \frac{a}{(x+a)^2} > 0$. Let $x = \ln(N) - 2$, and $N = 2^{512}$. Resolve the inequality w.r.t. m:

$$\begin{split} \frac{x}{x+2^{2m+1}} &< \frac{1}{1000} \\ \Leftrightarrow 2^{2m+1} > 999x \\ \Leftrightarrow m > \frac{1}{2}(\log_2(999x) - 1) \\ \Leftrightarrow m > \frac{1}{2}(\log_2(999(512\ln(2) - 2)) - 1) \\ \Leftrightarrow m > 8.714. \end{split}$$

m=9 repetitions are needed to ensure that the error probability stays below $p=\frac{1}{1000}$ for $N=2^{512}.$