Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 7
 - Proposed Solution -

Friday, May 31, 2019

Solution of Problem 1

Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ the Euler φ-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ with $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
a) Let $n=p$ be prime. It follows for the multiplicative group that:

$$
\mathbb{Z}_{p}^{*}=\left\{a \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\}=\{1,2, \ldots, p-1\} \Rightarrow \varphi(p)=p-1
$$

b) The power p^{k} has only one prime factor. So p^{k} has a common divisors that are not equal to one: These are only the multiples of p. For $1 \leq a \leq p^{k}$:

$$
1 \cdot p, \quad 2 \cdot p, \quad \ldots, \quad p^{k-1} \cdot p=p^{k} .
$$

And it follows that

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1) .
$$

c) Let $n=p q$ for two primes $p \neq q$. It holds for $1 \leq a<p q$

1) $p|a \vee q| a \Rightarrow \operatorname{gcd}(a, p q)>1$, and
2) $p \nmid a \wedge q \nmid a \Rightarrow \operatorname{gcd}(a, p q)=1$.

It follows $\mathbb{Z}_{p q}^{*}=\underbrace{\{1 \leq a \leq p q-1\}}_{p q-1 \text { elements }} \backslash\{\underbrace{\{1 \leq a \leq p q-1|p| a\}}_{q-1 \text { elements }} \dot{\cup} \underbrace{\{1 \leq a \leq p q-1|q| a\}}_{p-1 \text { elements }}\}$.
Hence: $\varphi(p q)=(p q-1)-(q-1)-(p-1)=p q-p-q+1=(p-1)(q-1)=\varphi(p) \varphi(q)$.
d) Apply the Euler phi-function on n with the following steps:

1. Factorize all prime factors of the given n
2. Apply the rules in a) to c), correspondingly.

$$
\begin{aligned}
& \varphi(4913)=\varphi\left(17^{3}\right) \stackrel{(\mathrm{b})}{=} 17^{2}(17-1)=4624, \text { and } \\
& \varphi(899)=\varphi\left(30^{2}-1^{2}\right)=\varphi((30-1)(30+1))=\varphi(29 \cdot 31) \stackrel{(\mathrm{c})}{=} 28 \cdot 30=840 .
\end{aligned}
$$

Solution of Problem 2

Consider the set $\mathbb{Z}_{m n}=\{1, \ldots, m n\}$. If $x \in \mathbb{Z}_{m n}^{*}$ then $\operatorname{gcd}(x, m)=\operatorname{gcd}(x, n)=1$. The members of $\mathbb{Z}_{m n}$ can be written as $a m+b$ for $a \in\{0,1, \ldots, n-1\}$ and $b \in\{1, \ldots, m\}$ namely:

$$
\begin{array}{cccc}
0 \times m+1 & 0 \times m+1 & \ldots & 0 \times m+m \\
1 \times m+1 & 1 \times m+1 & \ldots & 1 \times m+m \\
\vdots & \vdots & \ddots & \vdots \\
(n-1) \times m+1 & (n-1) \times m+1 & \ldots & (n-1) \times m+m
\end{array}
$$

For each $b_{i} \in \mathbb{Z}_{m}^{*}, a m+b_{i}$ is also relatively prime with respect to m for $a \in\{0,1, \ldots, n-1\}$. Hence in each row of the table above there are $\varphi(m)$ numbers relatively prime with respect to m. These numbers correspond to the columns $b_{i} \in \mathbb{Z}_{m}^{*}$ of the table above.
Now consider the column $a m+b_{i}$ for $a \in\{0,1, \ldots, n-1\}$. Since $\operatorname{gcd}(m, n)=1$, all $a m+b_{i}$'s are n different numbers modulo n among which only $\varphi(n)$ are relatively prime with respect to n. Therefore you have $\varphi(m)$ columns and in each column $\varphi(n)$ elements that are both relatively prime with respect to m and n. Therefore there are $\varphi(m) \varphi(n)$ numbers relatively prime to $m n$. Hence,

$$
\varphi(m n)=\varphi(m) \varphi(n)
$$

Solution of Problem 3

a) Define event A : ' n composite' $\Leftrightarrow \bar{A}$: ' n prime'.

Define event $B: m$-fold MRPT provides ' n prime' in all m cases.
From hint: $P(\bar{A})=\frac{2}{\ln (N)} \Rightarrow P(A)=1-\frac{2}{\ln (N)}$ (cf. Thm. 6.7)

Probability for the case that the MRPT fails for m times:

$$
P(B \mid A) \leq\left(\frac{1}{4}\right)^{m}
$$

Probability of the MRPT verifying an actual prime is:

$$
P(B \mid \bar{A})=1
$$

Probability of the MRPT wrongly verifying a composite n as prime after m tests is:

$$
\begin{aligned}
p & =P(A \mid B) \\
& =\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
& =\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})} \\
& \leq \frac{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)}{\left(\frac{1}{4}\right)^{m}\left(1-\frac{2}{\ln (N)}\right)+1 \cdot \frac{2}{\ln (N)}} \\
& =\frac{\ln (N)-2}{\ln (N)-2+2^{2 m+1}}
\end{aligned}
$$

b) Note that the above function $f(x)=\frac{x}{x+a}$ is monotonically increasing for $x \in \mathbb{R}, a>0$, as its derivative is $f^{\prime}(x)=\frac{a}{(x+a)^{2}}>0$. Let $x=\ln (N)-2$, and $N=2^{512}$. Resolve the inequality w.r.t. m :

$$
\begin{aligned}
& \frac{x}{x+2^{2 m+1}}<\frac{1}{1000} \\
& \Leftrightarrow 2^{2 m+1}>999 x \\
& \quad \Leftrightarrow m>\frac{1}{2}\left(\log _{2}(999 x)-1\right) \\
& \quad \Leftrightarrow m>\frac{1}{2}\left(\log _{2}(999(512 \ln (2)-2))-1\right) \\
& \quad \Leftrightarrow m>8.714 .
\end{aligned}
$$

$m=9$ repetitions are needed to ensure that the error probability stays below $p=\frac{1}{1000}$ for $N=2^{512}$.

