



#### Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

# Tutorial 10 - Proposed Solution -Friday, June 28, 2019

## Solution of Problem 1

Shamir's no-key protocol with parameters p = 31337, a = 9999, b = 1011, m = 3567.

a)

$$c_1 = m^a \mod p = 3567^{9999} \mod 31337 \equiv 6399$$
 (1)

$$c_2 = c_1^b \mod p = 6399^{1011} \mod 31337 \equiv 29872 \text{ (given by hint)}$$
 (2)

$$c_3 = c_2^{a^{-1}} \mod p = 29872^{14767} \mod 31337 \equiv 24982$$
 (3)

To compute  $c_1$  we use the square-and-multiply algorithm (SAM) (in chart).

The binary representation of a = 9999 is  $10011100001111_2$ .

**Hint:** If your calculator can not convert a large number  $\Rightarrow$  convert it by hand. For illustration, we can represent the exponentiation in terms of squarings by.

$$m^{a} \equiv (\dots (m^{1})^{2}m^{0})^{2}m^{0})^{2}m^{1})^{2}m^{1})^{2}m^{0})^{2}m^{0})^{2}m^{0})^{2}m^{0})^{2}m^{1})^{2}m^{1})^{2}m^{1} \mod p$$

| op | $\exp$ | modulo |
|----|--------|--------|
| 1  | 1      | 3567   |
| S  | 0      | 667    |
| S  | 0      | 6171   |
| SM | 1      | 13498  |
| SM | 1      | 23177  |
| SM | 1      | 3298   |
| S  | 0      | 2865   |
| S  | 0      | 29268  |
| S  | 0      | 18929  |
| S  | 0      | 31120  |
| SM | 1      | 143    |
| SM | 1      | 20384  |
| SM | 1      | 30182  |
| SM | 1      | 6399   |

Hint: Feel free to implement the SAM in order to check your results.

To compute  $a^{-1}$  modulo p-1, we use the EEA.

$$31336 = 3 \cdot 9999 + 1339$$
  

$$9999 = 7 \cdot 1339 + 626$$
  

$$1339 = 2 \cdot 626 + 87$$
  

$$626 = 7 \cdot 87 + 17$$
  

$$87 = 5 \cdot 17 + 2$$
  

$$17 = 8 \cdot 2 + 1 \Rightarrow \gcd(31336, 9999) = 1$$

To compute the inverse of a, we reorganize the last equation w.r.t. the remainder one and substitute the factors backwards:

$$1 = 17 - 8 \cdot 2$$
  
= 17 - 8 \cdot (87 - 5 \cdot 17) = 41 \cdot 17 - 8 \cdot 87  
= 41 \cdot 626 - 295 \cdot 87  
= 631 \cdot 626 - 295 \cdot 1339  
= 631 \cdot 9999 - 4712 \cdot 1339  
= 14767 \cdot 9999 - 4712 \cdot 31336

Hint: Check if result is equal to one in each step!

The computation of  $c_2^{a^{-1}} \mod p = 29872^{14767} \mod 31337$  with SAM provides:

| op | $\exp$ | modulo |
|----|--------|--------|
| 1  | 1      | 29872  |
| SM | 1      | 9607   |
| SM | 1      | 15639  |
| S  | 0      | 24373  |
| S  | 0      | 18957  |
| SM | 1      | 16656  |
| SM | 1      | 26421  |
| S  | 0      | 6229   |
| SM | 1      | 8290   |
| S  | 0      | 2059   |
| SM | 1      | 28387  |
| SM | 1      | 13917  |
| SM | 1      | 9317   |
| SM | 1      | 24982  |

## Solution of Problem 2

Let  $n = p \cdot q$ , with  $p \neq q$  prime, and x a non-trivial solution of  $x^2 \equiv 1 \pmod{n}$ , i.e.,  $x \not\equiv \pm 1 \pmod{n}$ . Then

 $gcd(x+1,n) \in \{p,q\}.$ 

#### **Proof:**

 $x^2 \equiv 1 \pmod{n}$  and  $x \not\equiv \pm 1 \pmod{n} \iff 2 \le x \le n-2$ 

$$\begin{aligned} x^2 \equiv 1 \pmod{n} &\iff (x^2 - 1) \equiv 0 \pmod{n} \\ &\iff (x + 1)(x - 1) \equiv 0 \pmod{n} \\ &\iff (x + 1)(x - 1) \equiv 0 \pmod{n} \\ &\iff (x + 1)(x - 1) = k \cdot p \cdot q \quad \exists k \in \mathbb{N} \end{aligned}$$
  
Due to  $x - 1 < x + 1 < n - 1 < n$ , neither  $x - 1$  nor  $x + 1$  can divide  $p$  and  $q$  jointly.  
 $\implies \gcd(x + 1, n) \in \{p, q\} \quad \checkmark$ 

### Solution of Problem 3

- a) The public parameters and the received ciphertext are:
  - $e = d^{-1} \mod \varphi(n)$ ,
  - n = p q,
  - $c = m^e \mod n$ .

The plaintext m is not relatively prime to n, i.e.,  $p \mid m$  or  $q \mid m$  and  $p \neq q$ .

Hence,  $gcd(m, n) \in \{p, q\}$  holds. The gcd(m, n) can be easily computed such that both primes can be calculated by either  $q = \frac{n}{p}$  or  $p = \frac{n}{q}$ .

The private key d can be computed since the factorization of n = pq is known.

$$d = e^{-1} \mod \varphi(p q) = e^{-1} \mod (p-1)(q-1).$$

This inverse is computed using the extended Euclidean algorithm.

**b)** m, n have common divisors.

The number of relatively prime numbers to n are  $\varphi(n) = (p-1)(q-1) = pq - (p+q) + 1$ .

$$P(\gcd(m,n) = 1) = \frac{\varphi(n)}{n-1}$$

The complementary probability is computed by:

$$\begin{split} P = \mathrm{P}(\gcd(m,n) \neq 1) &= 1 - \frac{\varphi(n)}{n-1} = \frac{n-1-\varphi(n)}{n-1} \\ &= \frac{p\,q - p\,q + p + q - 2}{p\,q - 1} = \frac{p+q-2}{p\,q-1} \end{split}$$

c) n: 1024 Bits  $\Rightarrow p \approx \sqrt{n} = 2^{512}, q \approx \sqrt{n} = 2^{512}$ . From b) we compute:

$$P = \frac{2^{512} + 2^{512} - 2}{2^{1024} - 1} = \frac{2^{513} - 2}{2^{1024} - 1} \approx 2^{-511} = (2^{-10})^{51} 2^{-1} \approx (10^{-3})^{51} \frac{5}{10} = 5 \cdot 10^{-154}$$

In general:  $n = 2^k$ ,  $p, q \approx 2^{\frac{k}{2}}$  for k Bits.

$$P = \frac{2^{\frac{k}{2}} + 2^{\frac{k}{2}} - 2}{2^{k} - 1} = \frac{2^{\frac{k}{2} + 1} - 2}{2^{k} - 1} \approx 2^{\frac{k}{2} + 1} 2^{-k} = 2^{-\frac{k}{2} + 1}$$

Thus, the probability that m and n are coprime is marginal, if n has sufficiently many bits.