

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 13 - Proposed Solution -Friday, July 26, 2019

Solution of Problem 1

a) With n = 39 and frequency analysis

l А В Ε F G Η L Ν Р R S U V Υ Ζ 3 2223 2 N_{ℓ} 5551 1 1 51 1

we can calculate the index of coincidence as

$$I_C = \sum_{\ell=0}^{25} \frac{N_\ell (N_\ell - 1)}{n(n-1)} = \frac{4 \cdot (2 \cdot 1) + 2 \cdot (3 \cdot 2) + 4 \cdot (5 \cdot 4)}{39 \cdot 38} = \frac{100}{1482} \approx 0.06748$$

- **b**) I_C is close to $\kappa_E = 0.0669$, so it is likely that a monoalphabetic cipher was used.
- c) From the first four letters, we can see that the Caesar cipher with a rotation of 13 was used. The plain text is calculated as follows.

Υ	V	Ι	R	Υ	В	А	Т	Ν	А	Q	С	Е	В	F	С	R	Ε
24	21	8	17	24	1	0	19	13	0	16	2	4	1	5	2	17	4
\mathbf{L}	Ι	V	Е	\mathbf{L}	Ο	Ν	G	А	Ν	D	Р	R	Ο	\mathbf{S}	Р	Е	R
11	8	21	4	11	14	13	6	0	13	3	15	17	14	18	15	4	17

- d) Some types of attacks are as follows.
 - Ciphertext-only attack
 - Known-plaintext attack
 - Chosen-plaintext attack
 - Chosen-ciphertext attack
- e) $P \in \{0,1\}^{k \times k}$. The sum of each row (and column) needs to be one for P to be a permutation matrix.
- f) Using some public initial vector c_0 the cryptograms for $n \in \mathbb{N}$ are calculated as $c_n = e(\boldsymbol{m}_n \oplus \boldsymbol{c}_{n-1}) = (\boldsymbol{m}_n \oplus \boldsymbol{c}_{n-1})\boldsymbol{P}.$

Solution of Problem 2

a) It holds

$$H(\hat{C} \mid \hat{M}) = \sum_{M \in \mathcal{M}} P(\hat{M} = M) H(\hat{C} \mid \hat{M} = M).$$

Calculate

$$H(\hat{C} \mid \hat{M} = M) = -\sum_{C \in \mathcal{C}} P(\hat{C} = C \mid \hat{M} = M) \log P(\hat{C} = C \mid \hat{M} = M)$$
$$= -(1 - \epsilon) \log(1 - \epsilon) - 3\frac{\epsilon}{3} \log\left(\frac{\epsilon}{3}\right) = -(1 - \epsilon) \log(1 - \epsilon) - \epsilon \log(\epsilon) + \epsilon \log(3)$$

which is independent of $P(\hat{M} = M)$, and hence

$$H(\hat{C} \mid \hat{M}) = \sum_{M \in \mathcal{M}} P(\hat{M} = M) H(\hat{C} \mid \hat{M} = M) = -(1 - \epsilon) \log(1 - \epsilon) - \epsilon \log(\epsilon) + \epsilon \log(3).$$

For calculating $P(\hat{C} = C)$ we condition on \hat{M} .

$$P(\hat{C} = C) = \sum_{M \in \mathcal{M}} P(\hat{M} = M) P(\hat{C} = C \mid \hat{M} = M) = (1 - \epsilon) P(\hat{M} = C) + \frac{\epsilon}{3} P(\hat{M} \neq C).$$

b) If \hat{M} is uniformly distributed, then

$$P(\hat{C} = C) = (1 - \epsilon)\frac{1}{4} + \frac{\epsilon}{3}\frac{3}{4} = \frac{1}{4},$$

and hence,

$$H(\hat{C}) = \log(4).$$

Moreover, $H(\hat{M}) = \log(4)$ since it is uniformly distributed. From the chain rule in Theorem 4.3 we get

 $H(\hat{M}) - H(\hat{M} \mid \hat{C}) = H(\hat{C}) - H(\hat{C} \mid \hat{M})$ which implies that

$$H(\hat{M} \mid \hat{C}) = H(\hat{C} \mid \hat{M}),$$

as $H(\hat{C}) = H(\hat{M}).$

- c) Using the expression of $H(\hat{M} \mid \hat{C})$ from above, the expression follows.
- d) The perfect secrecy is achieved when $P(\hat{C} = C \mid \hat{M} = M)$ does not depend on M and C. Hence:

$$1 - \epsilon = \frac{\epsilon}{3} \implies \epsilon = \frac{3}{4}$$

Solution of Problem 3

a) We show that a = 2 is a primitve elements utilizing Prop. 7.5

 $a \text{ is PE modulo } p \Leftrightarrow a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p} \ \forall p_i$

where $p - 1 = \prod_i p_i^{k_i}$ is the prime factorization of p - 1. With $p - 1 = 178 = 2 \cdot 89$ it holds

$$a^2 \equiv 4 \pmod{179},$$

 $a^{89} \equiv ((2^7)^2)^6 \cdot 2^5 \equiv (95^2)^3 \cdot 32 \equiv (75)^2 \cdot 75 \cdot 32 \equiv 76 \cdot 73 \equiv -1 \pmod{179},$

which verifies the claim.

b) First Alice calculates $u = a^{x_A} \mod p$:

$$u = a^{x_A} \equiv 2^{23} = 2^{14} \cdot 2^9 \equiv 95 \cdot 154 \equiv 131 \pmod{179},$$

hence, u = 131. Bob equally finds $v = a^{x_B} \mod p$:

$$a^{x_B} \equiv 2^{31} \equiv 2^{23} 2^8 \equiv 131 \cdot 77 \equiv 63 \pmod{179},$$

hence v = 63.

Bit	\mathbf{S}	М	Bit	\mathbf{S}	Μ
1	2	-	1	2	-
0	4	-	1	4	8
1	16	32	1	64	128
1		79	1	95	$\begin{array}{c} 11 \\ 63 \end{array}$
1	155	131	1	121	63

It holds $31 \cdot 23 \mod p - 1 = 1$, and hence,

$$v^{x_A} \equiv (2^{31})^{23} \equiv 2^1 \equiv 2 \pmod{179}.$$

- c) Oscar should use z = 89. He sends $u^{89} \mod 179$ in place of u to Bob. Oscar sends as well $v^{89} \mod 179$. The shared key will be either +1 or -1.
- d) A simple solution would be to exclude ± 1 .

Solution of Problem 4

a)
$$n = p \cdot q = 143$$
, $\varphi(n) = \varphi(p \cdot q) = (p - 1)(q - 1) = 10 \cdot 12 = 120$.
$$d = e^{-1} \mod \varphi(n) = e^{-1} \mod 120$$

It holds $1 = 1 \cdot 120 - 17 \cdot 7$, and hence, d = 103.

$$m = c^d \mod n = 31^{103} \mod 143$$

Use square and multiply to calculate m = 47.

Bit	S	Μ
1	31	-
1	103	47
0	64	-
0	92	-
1	27	122
1	12	86
1	103	47

b) Keys are generated such that

$$d = e^{-1} \operatorname{mod} \varphi(n).$$

It follows that there are $\varphi(\varphi(n))$ such numbers.

- c) The public parameters and the received ciphertext are:
 - $e = d^{-1} \mod \varphi(n)$,
 - n = p q,
 - $c = m^e \mod n$.

The plaintext m is not relatively prime to n, i.e., $p \mid m$ or $q \mid m$ and $p \neq q$.

Hence, $gcd(m, n) \in \{p, q\}$ holds. The gcd(m, n) can be easily computed such that both primes can be calculated by either $q = \frac{n}{p}$ or $p = \frac{n}{q}$.

The private key d can be computed since the factorization of n = pq is known.

$$d = e^{-1} \mod \varphi(pq) = e^{-1} \mod (p-1)(q-1).$$

This inverse is computed using the extended Euclidean algorithm.

d) Using Euler's criterion, -1 is a quadratic residue if and only if $(-1)^{\frac{p-1}{2}} = 1$, which means $\frac{p-1}{2} = 2k$ or equivalently p = 4k + 1.