Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 13
 - Proposed Solution -

Friday, July 26, 2019

Solution of Problem 1

a) With $n=39$ and frequency analysis

$$
\begin{array}{ccccccccccccccccc}
\ell & \mathrm{A} & \mathrm{~B} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{~L} & \mathrm{~N} & \mathrm{P} & \mathrm{R} & \mathrm{~S} & \mathrm{U} & \mathrm{~V} & \mathrm{Y} & \mathrm{Z} \\
N_{\ell} & 5 & 5 & 3 & 2 & 5 & 2 & 1 & 2 & 1 & 3 & 2 & 1 & 5 & 1 & 1
\end{array}
$$

we can calculate the index of coincidence as

$$
I_{C}=\sum_{\ell=0}^{25} \frac{N_{\ell}\left(N_{\ell}-1\right)}{n(n-1)}=\frac{4 \cdot(2 \cdot 1)+2 \cdot(3 \cdot 2)+4 \cdot(5 \cdot 4)}{39 \cdot 38}=\frac{100}{1482} \approx 0.06748
$$

b) I_{C} is close to $\kappa_{E}=0.0669$, so it is likely that a monoalphabetic cipher was used.
c) From the first four letters, we can see that the Caesar cipher with a rotation of 13 was used. The plain text is calculated as follows.

Y	V	I	R	Y	B	A	T	N	A	Q	C	E	B	F	C	R	E
24	21	8	17	24	1	0	19	13	0	16	2	4	1	5	2	17	4
L	I	V	E	L	O	N	G	A	N	D	P	R	O	S	P	E	R
11	8	21	4	11	14	13	6	0	13	3	15	17	14	18	15	4	17

d) Some types of attacks are as follows.

- Ciphertext-only attack
- Known-plaintext attack
- Chosen-plaintext attack
- Chosen-ciphertext attack
e) $\boldsymbol{P} \in\{0,1\}^{k \times k}$. The sum of each row (and column) needs to be one for \boldsymbol{P} to be a permutation matrix.
f) Using some public initial vector \boldsymbol{c}_{0} the cryptograms for $n \in \mathbb{N}$ are calculated as $\boldsymbol{c}_{n}=e\left(\boldsymbol{m}_{n} \oplus \boldsymbol{c}_{n-1}\right)=\left(\boldsymbol{m}_{n} \oplus \boldsymbol{c}_{n-1}\right) \boldsymbol{P}$.

Solution of Problem 2

a) It holds

$$
H(\hat{C} \mid \hat{M})=\sum_{M \in \mathcal{M}} P(\hat{M}=M) H(\hat{C} \mid \hat{M}=M)
$$

Calculate

$$
\begin{aligned}
H(\hat{C} \mid \hat{M}=M) & =-\sum_{C \in \mathcal{C}} P(\hat{C}=C \mid \hat{M}=M) \log P(\hat{C}=C \mid \hat{M}=M) \\
& =-(1-\epsilon) \log (1-\epsilon)-3 \frac{\epsilon}{3} \log \left(\frac{\epsilon}{3}\right)=-(1-\epsilon) \log (1-\epsilon)-\epsilon \log (\epsilon)+\epsilon \log (3)
\end{aligned}
$$

which is independent of $P(\hat{M}=M)$, and hence
$H(\hat{C} \mid \hat{M})=\sum_{M \in \mathcal{M}} P(\hat{M}=M) H(\hat{C} \mid \hat{M}=M)=-(1-\epsilon) \log (1-\epsilon)-\epsilon \log (\epsilon)+\epsilon \log (3)$.
For calculating $P(\hat{C}=C)$ we condition on \hat{M}.
$P(\hat{C}=C)=\sum_{M \in \mathcal{M}} P(\hat{M}=M) P(\hat{C}=C \mid \hat{M}=M)=(1-\epsilon) P(\hat{M}=C)+\frac{\epsilon}{3} P(\hat{M} \neq C)$.
b) If \hat{M} is uniformly distributed, then

$$
P(\hat{C}=C)=(1-\epsilon) \frac{1}{4}+\frac{\epsilon}{3} \frac{3}{4}=\frac{1}{4}
$$

and hence,

$$
H(\hat{C})=\log (4)
$$

Moreover, $H(\hat{M})=\log (4)$ since it is uniformly distributed. From the chainrule in Theorem 4.3 we get $H(\hat{M})-H(\hat{M} \mid \hat{C})=H(\hat{C})-H(\hat{C} \mid \hat{M})$ which implies that

$$
H(\hat{M} \mid \hat{C})=H(\hat{C} \mid \hat{M})
$$

as $H(\hat{C})=H(\hat{M})$.
c) Using the expression of $H(\hat{M} \mid \hat{C})$ from above, the expression follows.
d) The perfect secrecy is achieved when $P(\hat{C}=C \mid \hat{M}=M)$ does not depend on M and C. Hence:

$$
1-\epsilon=\frac{\epsilon}{3} \Longrightarrow \epsilon=\frac{3}{4}
$$

Solution of Problem 3

a) We show that $a=2$ is a primitve elements utilizing Prop. 7.5

$$
a \text { is PE modulo } p \Leftrightarrow a^{\frac{p-1}{p_{i}}} \not \equiv 1 \quad(\bmod p) \forall p_{i}
$$

where $p-1=\prod_{i} p_{i}^{k_{i}}$ is the prime factorization of $p-1$.
With $p-1=178=2 \cdot 89$ it holds

$$
\begin{aligned}
a^{2} & \equiv 4 \quad(\bmod 179) \\
a^{89} \equiv\left(\left(2^{7}\right)^{2}\right)^{6} \cdot 2^{5} \equiv\left(95^{2}\right)^{3} \cdot 32 & \equiv(75)^{2} \cdot 75 \cdot 32 \equiv 76 \cdot 73 \equiv-1 \quad(\bmod 179),
\end{aligned}
$$

which verifies the claim.

Bit	S	M
1	2	-
0	4	-
1	16	32
1	129	79
0	155	-
0	39	-
1	89	178

b) First Alice calculates $u=a^{x_{A}} \bmod p$:

$$
u=a^{x_{A}} \equiv 2^{23}=2^{14} \cdot 2^{9} \equiv 95 \cdot 154 \equiv 131 \quad(\bmod 179)
$$

hence, $u=131$. Bob equally finds $v=a^{x_{B}} \bmod p$:

$$
a^{x_{B}} \equiv 2^{31} \equiv 2^{23} 2^{8} \equiv 131 \cdot 77 \equiv 63 \quad(\bmod 179)
$$

hence $v=63$.

Bit	S	M
1	2	-
0	4	-
1	16	32
1	129	79
1	155	131

Bit	S	M
1	2	-
1	4	8
1	64	128
1	95	11
1	121	63

It holds $31 \cdot 23 \bmod p-1=1$, and hence,

$$
v^{x_{A}} \equiv\left(2^{31}\right)^{23} \equiv 2^{1} \equiv 2 \quad(\bmod 179)
$$

c) Oscar should use $z=89$. He sends $u^{89} \bmod 179$ in place of u to Bob. Oscar sends as well $v^{89} \bmod 179$. The shared key will be either +1 or -1 .
d) A simple solution would be to exclude ± 1.

Solution of Problem 4

a) $n=p \cdot q=143, \varphi(n)=\varphi(p \cdot q)=(p-1)(q-1)=10 \cdot 12=120$.

$$
d=e^{-1} \bmod \varphi(n)=e^{-1} \bmod 120
$$

It holds $1=1 \cdot 120-17 \cdot 7$, and hence, $d=103$.

$$
m=c^{d} \bmod n=31^{103} \bmod 143
$$

Use square and multiply to calculate $m=47$.

Bit	S	M
1	31	-
1	103	47
0	64	-
0	92	-
1	27	122
1	12	86
1	103	47

b) Keys are generated such that

$$
d=e^{-1} \bmod \varphi(n)
$$

It follows that there are $\varphi(\varphi(n))$ such numbers.
c) The public parameters and the received ciphertext are:

- $e=d^{-1} \bmod \varphi(n)$,
- $n=p q$,
- $c=m^{e} \bmod n$.

The plaintext m is not relatively prime to n, i.e., $p \mid m$ or $q \mid m$ and $p \neq q$.
Hence, $\operatorname{gcd}(m, n) \in\{p, q\}$ holds. The $\operatorname{gcd}(m, n)$ can be easily computed such that both primes can be calculated by either $q=\frac{n}{p}$ or $p=\frac{n}{q}$.
The private key d can be computed since the factorization of $n=p q$ is known.

$$
d=e^{-1} \quad \bmod \varphi(p q)=e^{-1} \quad \bmod (p-1)(q-1) .
$$

This inverse is computed using the extended Euclidean algorithm.
d) Using Euler's criterion, -1 is a quadratic residue if and only if $(-1)^{\frac{p-1}{2}}=1$, which means $\frac{p-1}{2}=2 k$ or equivalently $p=4 k+1$.

