

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 1 Friday, April 12, 2019

Problem 1. (*Dividers*) Let $a, b, c, d \in \mathbb{Z}$. The integer a divides b, if and only if there exists a $k \in \mathbb{Z}$ such that $a \cdot k = b$. This property is denoted by $a \mid b$. Prove the following implications.

- **a)** $a \mid b$ and $b \mid c \Rightarrow a \mid c$.
- **b)** $a \mid b \text{ and } c \mid d \implies (ac) \mid (bd).$
- c) $a \mid b \text{ and } a \mid c \implies a \mid (xb + yc) \quad \forall x, y \in \mathbb{Z}.$

Problem 2. (*GCD Multiplicativity*) Let $a, b, m \in \mathbb{Z}$ and gcd(a, b) the greatest common divisor of a and b.

a) Show the following.

$$gcd(a,b) = 1 \Longrightarrow gcd(ab,m) = gcd(a,m) gcd(b,m)$$

b) Show that the reverse direction does not hold true.

Problem 3. (Scytale) For the encryption with an ancient Scytale, a parchment is wrapped around a wand such that there are $l \in \mathbb{N}$ rows and $k \in \mathbb{N}$ columns, cf. the conceptual figure. The letters of the plaintext $\mathbf{m} = (m_1, m_2, \ldots, m_{kl})$ are written columnwise on the parchment. After unwrapping, the cryptogram is given on the stripe of parchment.

a) Give the entries $\pi(i)$ for $i \in \{1, 2, l, l+1, (k-1)l+1, kl-1, kl\}$ for the permutation

$$\boldsymbol{\pi} = \begin{pmatrix} 1 & 2 & \dots & l & l+1 & \dots & (k-1)l+1 & \dots & kl-1 & kl \\ \pi(1) & \pi(2) & \dots & \pi(l) & \pi(l+1) & \dots & \pi((k-1)l+1) & \dots & \pi(kl-1) & \pi(kl) \end{pmatrix}$$

which describes the encryption scheme of the Scytale with l rows and k columns.