Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 1

Friday, April 12, 2019

Problem 1. (Dividers) Let $a, b, c, d \in \mathbb{Z}$. The integer a divides b, if and only if there exists a $k \in \mathbb{Z}$ such that $a \cdot k=b$. This property is denoted by $a \mid b$. Prove the following implications.
a) $a \mid b$ and $b|c \Rightarrow a| c$.
b) $a \mid b$ and $c|d \quad \Rightarrow \quad(a c)|(b d)$.
c) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \quad \forall x, y \in \mathbb{Z}$.

Problem 2. ($G C D$ Multiplicativity) Let $a, b, m \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)$ the greatest common divisor of a and b.
a) Show the following.

$$
\operatorname{gcd}(a, b)=1 \Longrightarrow \operatorname{gcd}(a b, m)=\operatorname{gcd}(a, m) \operatorname{gcd}(b, m)
$$

b) Show that the reverse direction does not hold true.

Problem 3. (Scytale) For the encryption with an ancient Scytale, a parchment is wrapped around a wand such that there are $l \in \mathbb{N}$ rows and $k \in \mathbb{N}$ columns, cf. the conceptual figure. The letters of the plaintext $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{k l}\right)$ are written columnwise on the parchment. After unwrapping, the cryptogram is given on the stripe of parchment.

a) Give the entries $\pi(i)$ for $i \in\{1,2, l, l+1,(k-1) l+1, k l-1, k l\}$ for the permutation

$$
\boldsymbol{\pi}=\left(\begin{array}{cccccccccc}
1 & 2 & \ldots & l & l+1 & \ldots & (k-1) l+1 & \ldots & k l-1 & k l \\
\pi(1) & \pi(2) & \ldots & \pi(l) & \pi(l+1) & \ldots & \pi((k-1) l+1) & \ldots & \pi(k l-1) & \pi(k l)
\end{array}\right),
$$

which describes the encryption scheme of the Scytale with l rows and k columns.

