

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 2

Friday, April 26, 2019

Problem 1. (Sequence of affine ciphers)

Suppose you encrypt a message $m \in \mathbb{Z}_q$ using an affine cipher $e_k(m)$ with key $k = (a, b) \in \mathbb{Z}_q^* \times \mathbb{Z}_q$.

- **a)** Compute the *n*-fold encryption $c = e_{k_n}(...e_{k_2}(e_{k_1}(m))...)$ for keys $k_i = (a_i, b_i), i = 1, ..., n$.
- b) Is there an advantage using n subsequent encryptions, rather than using a single affine cipher? Substantiate your claim.

Problem 2. (*Hill cipher*) The matrix A shall be used in a Hill cipher, i.e., $\mathbf{c} = A\mathbf{m}$.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathbb{Z}_2^{3 \times 3} = \mathbb{F}_2^{3 \times 3}.$$

- a) Give explicit formulae for the encryption function.
- **b**) Does a decryption function exist? If yes, determine the decryption function.

Problem 3. (*Number of keys*) Compute the number of possible keys for the following cryptosystems.

- a) Substitution cipher with the alphabet $\Sigma = \mathbb{Z}_l = \{0, \dots, l-1\}$
- **b)** Affine cipher with the alphabet $\Sigma = \mathbb{Z}_{26} = \{0, \dots, 25\}$
- c) Permutation cipher with a fixed blocklength L