Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 2

Friday, April 26, 2019

Problem 1. (Sequence of affine ciphers)
Suppose you encrypt a message $m \in \mathbb{Z}_{q}$ using an affine cipher $e_{k}(m)$ with key $k=(a, b) \in$ $\mathbb{Z}_{q}^{*} \times \mathbb{Z}_{q}$.
a) Compute the n-fold encryption $c=e_{k_{n}}\left(\ldots e_{k_{2}}\left(e_{k_{1}}(m)\right) \ldots\right)$ for keys $k_{i}=\left(a_{i}, b_{i}\right), i=1, \ldots, n$.
b) Is there an advantage using n subsequent encryptions, rather than using a single affine cipher? Substantiate your claim.

Problem 2. (Hill cipher) The matrix A shall be used in a Hill cipher, i.e., $\mathbf{c}=A \mathbf{m}$.

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \in \mathbb{Z}_{2}^{3 \times 3}=\mathbb{F}_{2}^{3 \times 3}
$$

a) Give explicit formulae for the encryption function.
b) Does a decryption function exist? If yes, determine the decryption function.

Problem 3. (Number of keys) Compute the number of possible keys for the following cryptosystems.
a) Substitution cipher with the alphabet $\Sigma=\mathbb{Z}_{l}=\{0, \ldots, l-1\}$
b) Affine cipher with the alphabet $\Sigma=\mathbb{Z}_{26}=\{0, \ldots, 25\}$
c) Permutation cipher with a fixed blocklength L

