Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 5

Friday, May 17, 2019

Problem 1. (Weak DES keys) There are four so called weak DES keys. One of those keys is $K=0001111100011111000111110001111100001110000011100000111000001110$.
a) What happens if you use this key?
b) Can you find the other three weak keys?

Problem 2. (AES mix columns) The step MixColumns of the AES scheme is given by $\boldsymbol{r}=\boldsymbol{T} \boldsymbol{c}$ with input $\boldsymbol{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, output $\boldsymbol{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, and the circulant matrix

$$
\boldsymbol{T}=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4 \times 4}
$$

for the polynomial field $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[X] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[X]$.
Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \bmod \left(u^{4}+1\right)=r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0}$.

