Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 8

Friday, June 7, 2019

Problem 1. (Proof Wilson's primality criterion)
Wilson's primality criterion: An integer $n>1$ is prime $\Leftrightarrow(n-1)!\equiv-1(\bmod n)$.
a) Prove Wilson's primality criterion.
b) Check if 29 is a prime number by using the criterion above.
c) Is this criterion useful in practical applications?

Problem 2. (Pollard's p-1 factoring algorithm) Pollard's $p-1$ algorithm is an integer factoring algorithm. Evaluate $a^{B!} \bmod n$ for factoring.
a) Do you need to determine B or how can you determine B ?
b) Please find the non-trivial factors of $n=1403$ using Pollard's $p-1$ algorithm with $a=2$.
c) Please find the non-trivial factors of $n=25547$ using Pollard's $p-1$ algorithm with $a=2$.

Problem 3. (Proof Chinese Remainder Theorem)
Prove the Chinese Remainder Theorem: Suppose m_{1}, \ldots, m_{r} are pairwise relatively prime, $a_{1}, \ldots, a_{r} \in \mathbb{N}$.
The system of r congruences

$$
x \equiv a_{i}\left(\bmod m_{i}\right), \quad i=1, \ldots, r,
$$

has a unique solution modulo $M=\prod_{i=1}^{r} m_{i}$ given by

$$
x \equiv \sum_{i=1}^{r} a_{i} M_{i} y_{i} \quad(\bmod M)
$$

where $M_{i}=M / m_{i}, y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right), i=1, \ldots, r$.

