Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 9

Friday, June 21, 2019

Problem 1. (Chinese Remainder Theorem Example) There is the following system of linear congruences:

$$
\begin{aligned}
x & \equiv 3 \\
x & \equiv 5(\bmod 11) \\
x & \equiv 7 \quad(\bmod 13) \\
x & \equiv 9 \quad(\bmod 17)
\end{aligned}
$$

a) Compute the smallest positive solution using the Chinese Remainder Theorem.

Problem 2. (Proof of Theorem 7.2b) Let $n \in \mathbb{N}$. If there exists a primitive element modulo n, then there exist $\varphi(\varphi(n))$ many.

Problem 3. (Properties of the discrete logarithm) We examine the properties of the discrete logarithm.
a) Compute the discrete logarithm of 18 and 1 in the group \mathbb{Z}_{79}^{*} with generator 3 (by trial and error if necessary).
b) How many tryings would be necessary to determine the discrete logarithm in the worst case?

Problem 4. (Proof of Proposition 7.5) Prove Proposition 7.5 from the lecture, which gives a possibility to generate a primitive element modulo n :
Let $p>3$ be prime, $p-1=\prod_{i=1}^{k} p_{i}^{t_{i}}$ the prime factorization of $p-1$. Then,
$a \in \mathbb{Z}_{p}^{*}$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_{i}}} \not \equiv 1(\bmod p)$ for all $i \in\{1, \ldots, k\}$.

