

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 10 Friday, June 28, 2019

Problem 1. (Shamir's no-key protocol) Alice and Bob are using Shamir's no-key protocol to exchange a secret message. They agree to use the prime p = 31337 for their communication. Alice chooses the random number a = 9999 while Bob chooses b = 1011. Alice's message is m = 3567.

a) Calculate all exchanged values c_1 , c_2 , and c_3 following the protocol. **Hint**: You may use $6399^{1011} \equiv 29872 \pmod{31337}$.

Problem 2. (Proof of Proposition 8.3) Let $n = p \cdot q$, $p \neq q$ be prime and x a non-trivial solution of $x^2 \equiv 1 \pmod{n}$, i.e., $x \not\equiv \pm 1 \pmod{n}$.

Then

$$gcd (x+1, n) \in \{p, q\}.$$

Problem 3. (*RSA encryption*) A uniformly distributed message $m \in \{1, ..., n-1\}$ with n = pq with two primes $p \neq q$ is encrypted using the RSA-algorithm with public key (n, e).

- a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e., if $p \mid m \text{ or } q \mid m$.
- **b)** Calculate the probability for m and n having common divisors.
- c) How large is the probability of b) roughly, if n has 1024 bits and the primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.