Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 11

Friday, July 5, 2019

Problem 1. (Exponential congruences) Let $x, y \in \mathbb{Z}, a \in \mathbb{Z}_{n}^{\star} \backslash\{1\}$, and $\operatorname{ord}_{n}(a)=\min \{k \in$ $\left.\{1, \ldots, \varphi(n)\} \mid a^{k} \equiv 1 \bmod n\right\}$. Show that

$$
a^{x} \equiv a^{y} \quad(\bmod n) \Longleftrightarrow x \equiv y \quad\left(\bmod \operatorname{ord}_{n}(a)\right) .
$$

Problem 2. (How not to use the ElGamal cryptoystem) Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is $(p, a, y)=(3571,2,2905)$. Bob encrypts the messages m_{1} and m_{2} as

$$
\mathbf{C}_{1}=(1537,2192) \text { and } \mathbf{C}_{2}=(1537,1393) .
$$

a) Show that the public key is valid.
b) What did Bob do wrong?
c) The first message is given as $m_{1}=567$. Determine the message m_{2}.

Problem 3. (Properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i}(\bmod p)$.
b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 4. (Euler's criterion) Prove Euler's criterion (Proposition 9.2): Let $p>2$ be prime, then

$$
c \in \mathbb{Z}_{p}^{*} \text { is a quadratic residue modulo } p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \bmod p .
$$

