Lehrstuhl für Theoretische Informationstechnik

Exercise 1. Consider the following cipher for encrypting a message $\mathbf{m} = (m_1, m_2, \dots, m_n)$ with the numeric key k, where $1 \le k \le n$:

$$i \leftarrow 1$$

for $j \leftarrow 1$ to k
 $l \leftarrow 0$
while $lk + j \le n$
 $c_i \leftarrow m_{lk+j}$
 $l \leftarrow l + 1$
 $i \leftarrow i + 1$
return $\mathbf{c} = (c_1, \dots, c_n)$

RNTHAACHE

- a) Which classical cipher is described by this algorithm?
- b) Encrypt the message "ThisEncryptionSchemeIsNotSafeBecauseAttacksExplainedIn-TheFollowingLecturesWillBreakIt" with the key k = 7.

Exercise 2. Decrypt the following ciphertext and explain your approach. The plaintext message is in English.

sdscsxceppsmsoxddyzbydomdyebcovfocgsdrvkg cgoxoondyzbydomdyebcovfocgsdrwkdrowkdsmc

Exercise 3.

- a) Create the tables for addition and multiplication of two numbers $a + b = c \mod 7$ and $a \cdot b = c \mod 7$.
- b) Determine the greatest common divisor for the following pairs using the Euclidian algorithm: (72, 40), (31,21) and (720, 123).