Homework 10 in Cryptography I Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 20.01.2009

Exercise 30. Pierre de Fermat is said to have factored numbers n by decomposing them as

$$n = x^2 - y^2 = (x - y)(x + y).$$

Use this method to factor the integer n = 24003. Describe an algorithm to determine the above x and y. Can this method be applied in general for any n?

Exercise 31. Show, that 1031 is invertible modulo 2227 and compute the inverse 1031^{-1} in the ring \mathbb{Z}_{2227} .

Exercise 32.

RNTHAACHE

(a) Prove the Chinese Remainder Theorem:

Suppose m_1, \ldots, m_r are pairwise relatively prime, $a_1, \ldots, a_r \in \mathbb{N}$. The system of r congruences

$$x \equiv a_i \pmod{m_i}, \qquad i = 1, \dots, r,$$

has a unique solution modulo $M = \prod_{i=1}^{r} m_i$ given by

$$x = \sum_{i=1}^{r} a_i M_i y_i \pmod{M},$$

where $M_i = M/m_i, y_i = M_i^{-1} \pmod{m_i}, i = 1, ..., r.$

(b) Solve the following system of linear congruences using the Chinese Remainder Theorem and compute the smallest positive solution.

$$x \equiv 3 \pmod{11}$$
$$x \equiv 5 \pmod{13}$$
$$x \equiv 7 \pmod{15}$$
$$x \equiv 9 \pmod{17}$$