Homework 2 in Cryptography I

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 04.11.2008

Exercise 4. Determine the number of possible keys for the following cryptosystems.
a) Substitution cipher,
b) Affine cipher with the alphabet $\Sigma=\mathbb{Z}_{26}=\{0, \ldots, 25\}$,
c) Permutation cipher with a fixed blocklength k.

Exercise 5. Let e_{K} be one of the ciphers from Exercise 4. Show that encrypting a message m with key K_{1} and the result afterwards with the key K_{2} is the same as doing one encryption with a different key K_{3}, i.e.

$$
e_{K_{2}}\left(e_{K_{1}}(m)\right)=e_{K_{3}}(m) .
$$

Compute the corresponding keys for the concatenation in all three cases.

Exercise 6.

a) Prove the following statement.

A matrix $A \in \mathbb{Z}_{m}^{n \times n}$ is invertible, if and only if $\operatorname{gcd}(m, \operatorname{det}(A))=1$.
b) The alphabet

$$
X=\{A, B, \ldots, Z, \#, *,-\}
$$

with 29 elements can be identified with $\mathbb{Z}_{29}=\{0,1, \ldots, 28\}$. Suppose the blocklength is $m=2$. Decrypt the ciphertext Y J G-H T which is encrypted by a Hill cipher with

$$
U=\left(\begin{array}{cc}
3 & 13 \\
22 & 15
\end{array}\right) \in \mathbb{Z}_{29}^{2 \times 2}
$$

