Homework 5 in Cryptography I

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 25.11.2008

Exercise 13. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M}=M)>0$ for all $M \in \mathcal{M}, P(\hat{K}=K)>0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$
P(\hat{K}=K)=\frac{1}{|\mathcal{K}|} \text { for all } K \in \mathcal{K} \text { and }
$$

for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that $e(M, K)=C$.

Exercise 14. Does the cryptosystem from Exercise 12 have perfect secrecy? If not, propose a modified system which has perfect secrecy.

Exercise 15. Consider affine ciphers on \mathbb{Z}_{26}, i.e. $\mathcal{M}=\mathbb{Z}_{26}, \mathcal{C}=\mathbb{Z}_{26}$ and $\mathcal{K}=\mathbb{Z}_{26}^{*} \times \mathbb{Z}_{26}=\left\{(a, b) \mid a, b \in \mathbb{Z}_{26}, \operatorname{gcd}(a, 26)=1\right\}$. Select the keys \hat{K} uniformly distributed at random and independent of the messages \hat{M}.
Show that this system has perfect secrecy.

