

Exercise 19. A block cipher is a cryptosystem where plaintext and ciphertext space are the set \mathcal{A}^n of words of length n over an alphabet \mathcal{A} . The number n is called the block length.

Show that the encryption functions of block ciphers are permutations. How many different block ciphers exist if $\mathcal{A} = \{0, 1\}$ and the block length is n = 6?

Exercise 20. The ring \mathbb{Z}_2 is a field that is also named \mathbb{F}_2 . The ring \mathbb{Z}_4 is not a field, but there exists a field \mathbb{F}_4 with 4 elements. This field can be constructed as the residue class ring of the polynomial ring $\mathbb{F}_2[x]$ modulo the ideal generated by $f := x^2 + x + 1$. Specify all elements of the field \mathbb{F}_4 and determine the addition und multiplication tables for \mathbb{F}_4 .

Exercise 21. Consider the finite field \mathbb{F}_4 from Exercise 20. Construct an extension field \mathbb{F}_{16} of \mathbb{F}_4 with 16 elements and describe your approach. Hint: Start with the polynomial ring $\mathbb{F}_4[U]$.

Exercise 22. Consider the following AES-128 key given in hexadecimal notation:

 $K = 2d \ 61 \ 72 \ 69 \ 65 \ 00 \ 76 \ 61 \ 6e \ 00 \ 43 \ 6c \ 65 \ 65 \ 66 \ 66$

a) What is the round key K_0 ?

RNTHAACHE

b) What are the first 4 bytes of round key K_1 ?