Homework 5 in Cryptography I

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 24.11.2009

Exercise 13. Consider the following cryptosystem: one-letter messages are encrypted using an affine cipher. The key is chosen randomly and independent from the plaintext from a uniform distribution.
a) Show that this cryptosystem provides perfect secrecy for every distribution of \hat{M}.
b) Determine $H(\hat{K} \mid \hat{C})$ and $H(\hat{K} \mid \hat{M}, \hat{C})$.

Exercise 14.

Is a Hill cipher with keys in $\mathbb{Z}_{m}^{k \times k}$ perfectly secret when only blocks of length k are encrypted and all keys occur with the same probability?

Exercise 15. Let X, Y be random variables with support $\mathcal{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathcal{Y}=\left\{y_{1}, \ldots, y_{m}\right\}$, respectively, and distribution $P\left(X=x_{i}\right)=p_{i}$ and $P\left(Y=y_{j}\right)=q_{j}$, respectively. Let (X, Y) be the corresponding two-dimensional random variable with distribution $P\left(X=x_{i}, Y=y_{j}\right)=p_{i j}$. Prove the following statements from theorem 4.3:
(a) $0 \leq H(X)$ with equality if and only if $P\left(X=x_{i}\right)=1$ for some i.
(b) $H(X) \leq \log m$ with equality if and only if $P\left(X=x_{i}\right)=\frac{1}{m}$ for all i.
(c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent.
(d) $H(X, Y) \leq H(X)+H(Y)$ with equality if and only if X and Y are stochastically independent.

Hint: $\ln z \leq z-1$ for all $z>0$ with equality if and only if $z=1$.

