

Exercise 13. Consider the following cryptosystem: one-letter messages are encrypted using an affine cipher. The key is chosen randomly and independent from the plaintext from a uniform distribution.

- a) Show that this cryptosystem provides perfect secrecy for every distribution of \hat{M} .
- b) Determine $H(\hat{K} \mid \hat{C})$ and $H(\hat{K} \mid \hat{M}, \hat{C})$.

Exercise 14.

RWTHAACHFM

Is a Hill cipher with keys in $\mathbb{Z}_m^{k \times k}$ perfectly secret when only blocks of length k are encrypted and all keys occur with the same probability?

Exercise 15. Let X, Y be random variables with support $\mathcal{X} = \{x_1, \ldots, x_m\}$ and $\mathcal{Y} = \{y_1, \ldots, y_m\}$, respectively, and distribution $P(X = x_i) = p_i$ and $P(Y = y_j) = q_j$, respectively. Let (X, Y) be the corresponding two-dimensional random variable with distribution $P(X = x_i, Y = y_j) = p_{ij}$. Prove the following statements from theorem 4.3:

- (a) $0 \le H(X)$ with equality if and only if $P(X = x_i) = 1$ for some *i*.
- (b) $H(X) \le \log m$ with equality if and only if $P(X = x_i) = \frac{1}{m}$ for all *i*.
- (c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent.
- (d) $H(X,Y) \leq H(X) + H(Y)$ with equality if and only if X and Y are stochastically independent.

Hint: $\ln z \le z - 1$ for all z > 0 with equality if and only if z = 1.