Homework 1 in Cryptography I
 Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 27.10.2009

Exercise 1.

Let $a, b, c, d \in \mathbb{Z} . a$ is said to divide b if (and only if) there exists some $k \in \mathbb{Z}$ such that $a \cdot k=b$. Notation: $a \mid b$. Prove the following:
(i) $a \mid b$ and $b|c \quad \Rightarrow \quad a| c$.
(ii) $a \mid b$ and $c|d \Rightarrow \quad(a c)|(b d)$.
(iii) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \forall x, y \in \mathbb{Z}$.

Exercise 2. Decrypt the following ciphertexts and explain your approach. The plaintext messages are in english.
a) Caesar cipher:
sdscsxceppsmsoxddyzbydomdyebcovfocgsdrv
kgcgoxoondyzbydomdyebcovfocgsdrwkdrowkdsmc
b) Affine cipher:
onhldqrttydxtlgtojkhqtjxctdc

Exercise 3. Consider an affine cipher over an alphabet with m letters.
(a) Determine the number of keys for this cipher. How many keys are there if m is prime? Why is it "better" to use an affine cipher with an alphabet of 23 instead of 26 letters?
(b) Show that the repeated encryption of a plaintext with two affine ciphers is not different from the encryption with one affine cipher using a different key.

