Homework 13 in Cryptography I
Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Steven Corroy 02.02.2010

Exercise 34.

Alice wants to tell Bob a secret m. She encrypts it with Bob's public RSA-key $(899,11)$. The encrypted message which Alice sends to Bob is 468 .
Find out, what the original message m was.

Exercise 35.

Assume an RSA module $n:=p q$ with two primes $p \neq q$ and a public key $e=d^{-1}$. The message $m \in\{1, \ldots, n-1\}$ is encrypted using the RSA-algorithm with e.
(a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e. if $p \mid m$ or $q \mid m$.
(b) Calculate the probability for m and n having common divisors.
(c) How large is the probability if n has 1024 bits? The primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Exercise 36. Assume a single message m is encrypted with RSA twice: once with the public key (n, e) and once with the public key (n, f). The numbers e and f are relatively prime. Is it possible to decode the message with knowledge of the public parameters and the cryptograms?

