Homework 2 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Henning Maier, Georg Bocherer
 26.10.2010

Exercise 5. Prove Proposition 7.5: Let $p>3$ be prime, $p-1=\prod_{i=1}^{k} p_{i}^{t_{i}}$ the prime factorization of $p-1$. Then
a is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_{i}}} \not \equiv 1 \quad(\bmod p) \quad \forall i=1, \ldots, k$.

Exercise 6. Prove Proposition 8.3: Let $n=p q, p \neq q$ prime and x a nontrivial solution of $x^{2} \equiv 1(\bmod n)$, i.e., $x \not \equiv \pm 1(\bmod n)$. Then

$$
\operatorname{gcd}(x+1, n) \in\{p, q\} .
$$

Exercise 7. Prove Proposition 9.2: (Euler's criterion) Let $p>2$ be prime. $c \in \mathbb{Z}_{p}^{*}$ is a quadratic residue modulo p if and only if $c^{\frac{p-1}{2}} \equiv 1(\bmod p)$.

Exercise 8. In RSA, often small exponents are used for encryption. Identify assets and drawbacks of this method and suggest counter measures for the drawbacks.

