Homework 2 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Henning Maier, Georg Bocherer 26.10.2010

RWTHAACHE

Exercise 5. Prove Proposition 7.5: Let p > 3 be prime, $p - 1 = \prod_{i=1}^{k} p_i^{t_i}$ the prime factorization of p - 1. Then

a is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}$ $\forall i = 1, \dots, k$.

Exercise 6. Prove Proposition 8.3: Let n = pq, $p \neq q$ prime and x a nontrivial solution of $x^2 \equiv 1 \pmod{n}$, i.e., $x \not\equiv \pm 1 \pmod{n}$. Then

$$gcd(x+1,n) \in \{p,q\}.$$

Exercise 7. Prove Proposition 9.2: (Euler's criterion) Let p > 2 be prime. $c \in \mathbb{Z}_p^*$ is a quadratic residue modulo p if and only if $c^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Exercise 8. In RSA, often small exponents are used for encryption. Identify assets and drawbacks of this method and suggest counter measures for the drawbacks.