Homework 4 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Henning Maier, Georg Bocherer
 09.11.2010

Exercise 13. Let $p>2$ be prime. Let $\left(\frac{a}{p}\right)$ be the Legendre symbol. Prove the following calculation rules.
(a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$
(b) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
(c) $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$, if $a \equiv b \bmod p$

Exercise 14. Show that Algorithm 6 from the lecture notes calculates the Jacobi symbol. Hint: Use the following equations for any odd integers $n, m>2$.

$$
\begin{aligned}
\left(\frac{m}{n}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}} \cdot\left(\frac{n}{m}\right) \quad \text { law of quadratic reciprocity } \\
\left(\frac{2}{n}\right) & =(-1)^{\frac{n^{2}-1}{8}}
\end{aligned}
$$

Exercise 15. Prove Remark 9.9 (1): Show that for $a, b, n \in \mathbb{N}$, it holds for the Jacobi symbol ($\frac{a b}{n}$) that

$$
\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) .
$$

