Homework 9 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier
 14.12.2010

Exercise 29. We consider the parameter generation algorithm of DSA.
It provides prime $2^{159}<q<2^{160}$ and integer $0 \leq t \leq 8$ such that prime $2^{511+64 t}<p<2^{512+64 t}$ and $q \mid p-1$.
Given the following algorithm:

1) Select $g \in \mathbb{Z}_{p}^{*}$,
2) Compute $a=g^{\frac{p-1}{q}}(\bmod p)$,
3) If $a==1$, go to label 1),
4) Else return a,
prove that a is a generator of the cyclic subgroup of order q in \mathbb{Z}_{p}^{*}.

Exercise 30.

Suggest a probabilistic algorithm to determine a pair of primes p, q with:

$$
\begin{array}{r}
2^{159}<q<2^{160}, \\
2^{1023}<p<2^{1024} \\
q
\end{array}, \mid p-1 .
$$

What is the success probability of your algorithm?
Hint: Assume the unproven statement that the number of primes of the form $k q+1$, $k \in \mathbb{N}$, is asymptotically the number given by the "prime number theorem" divided by q.

Exercise 31.

For the security of the DSA, a hash-function is mandatory. Show that it is possible to forge a signature of a modified scheme where no cryptographic hash function is used.

Hint: This attack is provided in the lecture notes for the ElGamal signature scheme .

