Homework 11 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier 11.01.2011

Exercise 35. We investigate several attacks on identification schemes.
a) Describe a replay attack for a fixed password identification.

Propose a simple identification scheme prevent this attack.
b) The following challenge-response mutual authentication protocol is given

1) $A \rightarrow B: r_{A}$
2) $A \leftarrow B: E_{K}\left(r_{A}, r_{B}\right)$
3) $A \rightarrow B: r_{B}$

Explain how an eavesdropper E can authenticate to A without knowing the symmetric key K. This a reflection attack. Propose an improved protocol.
c) The following challenge-response protocol based on digital signatures is given

1) $A \rightarrow B: r_{A}$
2) $A \leftarrow B: r_{B}, S_{B}\left(r_{B}, r_{A}, A\right)$
3) $A \rightarrow B: r_{A}^{\prime}, S_{A}\left(r_{A}^{\prime}, r_{B}, B\right)$

Explain how an eavesdropper E can authenticate to B without signing any message with his own identity. This is an interleaving attack.

Exercise 36.

We consider a challenge-response mutual authentification based on digital signatures:

1) $A \leftarrow B: r_{B}$
2) $A \rightarrow B: \operatorname{cert}_{A}, r_{A}, B, S_{A}\left(r_{A}, r_{B}, B\right)$
3) $A \leftarrow B: \operatorname{cert}_{B}, A, S_{B}\left(r_{B}, r_{A}, A\right)$

The arguments of signature functions S_{A} and S_{B} are secured by a cryptographical hash function $h(m)$. The symbols r_{A} and r_{B} denote arbitrary large random numbers. The length of B and A is fixed.
a) Can A exploit this scheme to have B signed an arbitrary document?

Is this possible with certain limitations?
b) Calculate $B \mathrm{~s}$ ElGamal-signature for $r_{A}=92, r_{B}=27, B=12$ and $A=21$. We use private keys $x_{A}=17$ and $x_{B}=5$, a public prime $p=107$, a primitive root $a=2$ and session key $k=71$. We employ $h(m)=m(\bmod 99)$ as a simple hash function.

