Homework 13 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier 25.01.2011

Exercise 41. Consider the following equation:

RWTHAACHF

$$Y^2 = X^3 + X + 1.$$

- (a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_7 .
- (b) Determine all points in $E(\mathbb{F}_7)$ and compute the trace t of E.
- (c) Draw a plot of the elliptic curve E over \mathbb{F}_7 .
- (d) Show that $E(\mathbb{F}_7)$ is cyclic and give a generator.

Exercise 42. Consider the following parameterized equation:

$$E_a: Y^2 = X^3 + aX + (a+1).$$

- (a) For which values of a does E_a describe an elliptic curve over \mathbb{F}_{11} ?
- (b) How many points are in $E_4(\mathbb{F}_{11})$? Determine all points and draw a plot.
- (c) Find the inverse to each point $P \in E_4(\mathbb{F}_{11})$.