Homework 13 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier
 25.01.2011

Exercise 41. Consider the following equation:

$$
Y^{2}=X^{3}+X+1 .
$$

(a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_{7}.
(b) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
(c) Draw a plot of the elliptic curve E over \mathbb{F}_{7}.
(d) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and give a generator.

Exercise 42. Consider the following parameterized equation:

$$
E_{a}: Y^{2}=X^{3}+a X+(a+1)
$$

(a) For which values of a does E_{a} describe an elliptic curve over \mathbb{F}_{11} ?
(b) How many points are in $E_{4}\left(\mathbb{F}_{11}\right)$? Determine all points and draw a plot.
(c) Find the inverse to each point $P \in E_{4}\left(\mathbb{F}_{11}\right)$.

