Homework 3 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier
 02.11.2010

Exercise 9. Alice and Bob are using the Rabin cryptosystem. Bob's public key is $n=4757$. All integers in the set $\{1, \ldots, n-1\}$ are represented as bit sequences with 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Alice sends the cryptogram $c=1935$. Decipher this cryptogram.

Exercise 10.

Create a signature scheme based on the Rabin cryptosystem. With this signature scheme, generate the signature for the message $m=12211$ and the public key $n=30353$.
Hint: There is a signature scheme based on RSA.

Exercise 11. Let $p>2$ be prime.
a) Show that if $x \equiv-x(\bmod p)$, then $x \equiv 0(\bmod p)$.
b) Suppose $x, y \not \equiv 0(\bmod p)$ and $x^{2} \equiv y^{2}\left(\bmod p^{2}\right)$. Show that $x \equiv \pm y\left(\bmod p^{2}\right)$.
c) Suppose Alice cheats when flipping coins over the telephone by choosing $p=q$. Show that Bob always loses if he trusts Alice.
d) Bob suspects that Alice has cheated. Why is it not wise for Alice to choose $n=p^{2}$ as secret key, can Bob discover her attempt to cheat? Can Bob use her cheat as an advantage for himself?

