Homework 5 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Georg Böcherer, Henning Maier
 16.11.2010

Exercise 16. Prove Proposition 9.13. of the lecture notes:
Let $p>3$ be prime and g a primitive element modulo p.
Then a is a quadratic residue $(\bmod p) \Leftrightarrow a \equiv g^{i}(\bmod p)$ for some even integer i.

Exercise 17. Establish a message decryption with the Goldwasser-Micali cryptosystem. Start by finding the cryptosystem's parameters.
(a) Find a pseudo-square modulo $n=p \cdot q=31 \cdot 79$ by using the algorithm from the lecture notes. Start with $a=10$ and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with $b=17$ and proceed analoguously.
(b) Decrypt the ciphertext $c=(1418,2150,2153)$.

Exercise 18.

Bob receives the following cryptogram from Alice:
(101010111000011010001011100101111100110111000, 1306)
The corresponding message has been encrypted using the Blum-Goldwasser cryptosystem with public key $n=1333$. The number 1306 corresponds to the value x_{10} (cf. lecture notes). Decipher the cryptogram.
Note: The security requirement to only use a maximum of $\log _{2}\left(\log _{2}(n)\right)$ bits of the BBS generator is violated in this example. Instead, 5 bits of output are used.
Hint: The letters of the latin alphabet A, \ldots, Z are represented using the following 5 bit representation: $A=00000, B=00001, \ldots, Z=11001$.

Exercise 19. The security of the Blum-Blum-Shub-generator is based on the intricacy to compute square roots modulo n, where $n=p q$ for two distinct primes p and q with $p, q \equiv 3(\bmod 4)$.
Design a generator for pseudorandom bits which is based on the hardness of the RSAproblem.

