Homework 11 in Cryptography II
Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 23.07.2009

Exercise 31. Create a Challenge-Response protocol in which Alice and Bob authenticate each other. The protocol shall be based on Public-Key cryptography. Is it possible to reach this goal without a hash function in just 3 messages?

Exercise 32. Consider the equation

$$
Y^{2}=X^{3}+X+1 .
$$

Show that this equation describes an elliptic curve over the field \mathbb{F}_{7}.
a) Determine all points in $E\left(\mathbb{F}_{7}\right)$ and compute the trace t of E.
b) Show that $E\left(\mathbb{F}_{7}\right)$ is cyclic and find a generator.

Exercise 33. Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f(X, Y):=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X$ and $\partial f / \partial Y$ are zero at P.
Prove that for the discriminant Δ of E it holds that

$$
\Delta \neq 0 \Leftrightarrow E \text { has no singular points. }
$$

