Homework 2 in Cryptography II

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 30.04.2009

Exercise 5. Alice is using the ElGamal encryption system for encrypting the messages m_{1} and m_{2}. The generated cryptograms are

$$
\mathbf{C}_{1}=(1537,2192) \text { and } \mathbf{C}_{2}=(1537,1393) .
$$

The public key of Alice is $(p, a, y)=(3571,2,2905)$.
a) What did Alice do wrong?
b) The first message is given as $m_{1}=567$. Determine the message m_{2}.

Exercise 6. Consider the finite field $\mathbb{F}_{2^{3}}$ with 8 elements. This field can be constructed as the residue ring of the polynomial ring $\mathbb{F}_{2}[u]$ modulo an ideal generated by an irreducible polynomial of degree 3 .
a) Determine all irreducible polynomials of degree 3 in $\mathbb{F}_{2}[u]$.

Consider the cyclic group $G=\mathbb{F}_{2^{3}}^{*}$, where the multiplication is taken modulo the polynomial $f(u)=u^{3}+u+1$.
b) Show that u is a generator for G.

Exercise 7. Consider the group G of the last exercise. Execute the generalized ElGamal encryption with public key $y=(110)$, which is the binary representation of the polynom $u^{2}+u$, message $m=(111)$ and $k=3$. What is the private key x of Alice?

