Homework 5 in Cryptography II

Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 28.05.2009

Exercise 14. Show that Algorithm 6 from the lecture notes calculates the Jacobi symbol.
Hint: Use the following equations for any odd integers $n, m>2$.

$$
\begin{aligned}
\left(\frac{m}{n}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}} \cdot\left(\frac{n}{m}\right) \quad \text { law of quadratic reciprocity } \\
\left(\frac{2}{n}\right) & =(-1)^{\frac{n^{2}-1}{8}}
\end{aligned}
$$

Exercise 15. Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
(a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i}(\bmod p)$.
(b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
(c) The product $a b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Exercise 16. Establish a message decryption with the Goldwasser-Micali cryptosystem. Start by finding the cryptosystem's parameters.
(a) Find a pseudo-square modulo $n=p \cdot q=31 \cdot 79$ using the algorithm from the lecture notes. Start with $a=10$ and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with $b=17$ and proceed analoguously.
(b) Decrypt the ciphertext $c=(1418,2150,2153)$.

