Homework 6 in Cryptography II<br>Prof. Dr. Rudolf Mathar, Wolfgang Meyer zu Bergsten, Michael Reyer 18.06.2009

Exercise 17. Bob gets the message
(101010111000011010001011100101111100110111000, 1306)
from Alice. This message was encrypted with the Blum-Goldwasser Cryptosystem with the public key $n=1333$. The number 1306 represents $x_{10}$. Decrypt this message.
Note: The security requirement to only use a maximum of $\log _{2}\left(\log _{2}(n)\right)$ bits of the BBS generator is violated in this example. Instead, 5 bits of output are used.

Note: The letters of the alphabet $A, \ldots, Z$ are represented in the following way by 5 bits: $A=00000, B=00001, \ldots, Z=11001$.

Exercise 18. The security of the Blum-Blum-Shub-generator is based on the difficulty to compute square roots modulo $n$, where $n=p q$ for two distinct primes $p$ and $q$ with $p, q \equiv 3(\bmod 4)$.
Design a generator for pseudorandom bits which is based on the hardness of the RSAproblem.

Exercise 19. Complete the proof of example 10.2 from the lecture notes: Show that from

$$
k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \quad(\bmod p-1)
$$

the discrete logarithm $k=\log _{a} b$ can be efficiently computed.

